

Sudan University of Science and Technology College of Engineering Electronics Engineering School

Simulation of human prosthetic arm

A Research Submitted In Partial fulfillment for the Requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Alharith Abbas Elamin.
- 2. Aziz Mohammed Almogtaba.
- 3.Esra Hashim Ali.
- 4. Tagwa Mukhtar Mohammed.

Supervised:

Dr. AlaEldin Awouda

וצוייד

بسم الله الرحمن الرحيم

قال تعالى:

صدق الله العظيم

سورة الإسراء - الآية 85

Dedication

For those whom inspired us to do this thesis, who are struggling life to live it the way they want, not the way they can. To reach decent life to themselves and others surrounding them, to those who don't make handicaps a factor of discrimination.

It is presented to all families, the true blessing from god into our lives. To teachers and doctors who were the definition of beacons in our search for knowledge. Sudan University of science and technology entire staff.

We expand our gratitude to the University of Medical Science and Technology crew for their great help. Last but not least to the special person who dedicated his time and knowledge to make this possible, the one and only Dr. AlaEldin Awouda.

Acknowledgment

All praise due to Allah, the all mighty god, who spread his and wisdom across the globe, all our thanks to our lord.

To the supervisor Dr. AlaEldin Awouda, the guider of our work, gave us his trust in the knowledge and work, being determined and dedicated, helped and motivated us, to reach this form.

To our parents, friends and families, those who pushed our goals till clarity, supported to the limit for it to be, sometimes over pushed it just so we succeed.

Abstract

Abstract

The human prosthetics is a major lack in our surrounding, while the technical capabilities are capable for its availability. Thus a control system for a prosthetic human arm that functions by mirroring the movements of an existing arm is the aim of this project. An arm that reflects the other one to make daily tasks easier for the amputees, with the capability of sensing excess heat and force applied on it to offer protective reaction. This thesis uses electrodes sensors to sense the different moves of the arm. The signals from electrodes through a pickup circuit will be passed to microcontroller to translate those signals to the motors. A programmed microcontroller is used to control the behavior of the arm. Different sensors are used to sense different physical signals such as temperature and force. According to the signals from those sensors the microcontroller will control the arm. The simulation for the system carried a fair degree of freedom for shoulder, elbow and wrist joints, to simulate the mirroring of the movements. The obtained result from the simulation is encouraged for more research in this area.

المستخلص

الأطراف الصناعيه البشريه هي نقص كبير في محيطنا, في حين أن القدرات التقنيه قادره على توفيرها. وبالتالي نظام تحكم لليد الصناعيه البشريه الذي يعمل عن طريق عكس حركة يد موجوده هو الهدف من هذا المشروع. يد تقوم بعكس الأخرى لجعل المهام يوميه أسهل لمبتوري اليد, مع قدرة الإستشعار للحراره الفائضه و القوه المطبقه عليها لتقديم رد فعل وقائي. هذه الأطروحه تستخدم مستشعرات الإلكترود لإستشعار المحركات المختلفه لليد. الإشارات من الإلكترود عبر دائرة التقاط ستمرر الى المتحكم الدقيق لترجمة تلك الإشارات للموتور. متحكم دقيق مترجم مستخدم للتحكم في سلوك اليد. مختلف المستشعرات مستخدمه لإستشعار مختلف الإشارات الفيزيائيه مثل الحراره والقوة. تبعا للإشارات من تلك المستشعرات المتحكم الدقيق سيتحكم في اليد. المحاكاة للنظام تحمل درجه عادله من الحريه للمفاصل الكتف, المرفق و المعصم, المحاكاة انعكاس الحركات. النتيجه المتحصله من المحاكاة قابله لمزيد من الدراسه في هذا المجال.

Contents

الاستهلال		1
Dedicat	ion	
Acknow	vledgment	III
Abstrac	rt	IV
مستخلص		V
Content	ts	V
List of	Tables	VIII
List of	figures	IX
List of	abbreviations:	XI
Chapter	One	1
Introdu	ction	1
1.1	Background:	2
1.2	Problem Statement:	2
1.3	Proposed Solutions:	3
1.4	Research Aims and Objectives	3
1.5	Scope:	4
1.6	Methodology:	4
1.7	Research Outlines:	5
Chapter	r two	Error! Bookmark not defined
Literatu	re Review	Error! Bookmark not defined
2.1	Prosthetic arm:	Error! Bookmark not defined
2.2	Circuit components:	Error! Bookmark not defined
2.2	2.1 The electrode:	Error! Bookmark not defined
2.2	2.2 The pickup circuit:	Error! Bookmark not defined
2.2	Processing unit (Microcontroller):	Error! Bookmark not defined
2.2	2.4 The drive circuit (L293):	Error! Bookmark not defined
2.2	2.5 Motors:	Error! Bookmark not defined
2.2	2.6 Force sensing resistors (FSR):	Error! Bookmark not defined
2.2	2.7 LM35:	Error! Bookmark not defined
Chapter	three	Error! Bookmark not defined
The Mi	cro-controller	Error! Rookmark not defined

3.1	Microcontroller over other controlling units:	.Error!	Bookmark not defined
3.2	AVR over PIC:	.Error!	Bookmark not defined
3.3	ATmega16:		
3.3.	1 Important Features:	.Error!	Bookmark not defined
3.3.	2 Pin Configuration:	.Error!	Bookmark not defined
3.3.	ADC – Analog to Digital Converter:	.Error!	Bookmark not defined
Chapter 1	our	.Error!	Bookmark not defined
Circuit D	esign	.Error!	Bookmark not defined
4.1	Introduction:	.Error!	Bookmark not defined
4.3	Adjusting EMG signal (the pick-up circuit):	.Error!	Bookmark not defined
4.4	The control unit (the micro-controller):	.Error!	Bookmark not defined
4.5	Sensors:	.Error!	Bookmark not defined
Chapter	rive	.Error!	Bookmark not defined
Simulation	on and Results	.Error!	Bookmark not defined
5.1	Introduction:	.Error!	Bookmark not defined
5.2	The signal collection phase (pickup circuit):	.Error!	Bookmark not defined
5.2.	1 Instrumentation Amplifier:	.Error!	Bookmark not defined
5.2.	2 Band pass filter:	.Error!	Bookmark not defined
5.2.	Precision rectifier:	.Error!	Bookmark not defined
5.2.	The FSR pressure sensor:	.Error!	Bookmark not defined
5.3	Microcontroller phase:	.Error!	Bookmark not defined
5.3.	1 ADC:	.Error!	Bookmark not defined
5.3.	2 The Circuit:	.Error!	Bookmark not defined
5.3.	3 Motor Movements:	.Error!	Bookmark not defined
5.4	Field tests:	.Error!	Bookmark not defined
Chapter	six	.Error!	Bookmark not defined
Conclusi	ons and Recommendations	.Error!	Bookmark not defined
6.1	Conclusions:	.Error!	Bookmark not defined
6.2	Recommendations:	.Error!	Bookmark not defined
Deference	96.	Errort	Rookmark not defined

List of Tables

Table 2-1: Bioelectric Signals Sensed by Biopot	ential Electrodes and their sources Error!
Bookmark not defined.	
Table 3-1: Voltage Reference Selection for ADC	Error! Bookmark not defined.
Table 3-2: ADC Prescaler Selection	Error! Bookmark not defined.
Table 3-3: ADC Auto Trigger Source Selection	Error! Bookmark not defined.

List of figures

Figure 2.1: the correct placement of electrode	. Error! Bookmark not defined.
Figure 2.2: the pickup-circuit	
Figure 2.3: L293 pins description	Error! Bookmark not defined.
Figure 2.4: The FSR.	Error! Bookmark not defined.
Figure 2.5: resistance vs force.	Error! Bookmark not defined.
Figure 2.6: schematic.	Error! Bookmark not defined.
Figure 2.7: LM35.	Error! Bookmark not defined.
Figure 3.1: ATmega16 pin configuration.	Error! Bookmark not defined.
Figure 4.1: circuit stages.	Error! Bookmark not defined.
Figure 4.2: electrode placement.	.Error! Bookmark not defined.
Figure 4.3: the pick-up circuit stages.	.Error! Bookmark not defined.
Figure 4.4: instrumentation amplifier (multisim®)	.Error! Bookmark not defined.
Figure 4.5: instrumentation amplifier and band pass filter	er (multisim®) Error!
Bookmark not defined.	
Figure 4.6: precision rectifier added to previous stages (multisim®) Error! Bookmark
not defined.	
Figure 4.7:Force sensing resisters (FSR) connection (mu	ultisim®).Error! Bookmark not
defined.	
Figure 5.1: the instrumentation amplifier output (multisi	im®)Error! Bookmark not
defined.	
Figure 5.2: the band pass filter output result (multisim®)Error! Bookmark not
defined.	
Figure 5.3: precision rectifier output (multisim®)	Error! Bookmark not defined.
Figure 5.4: FSR circuit output (multisim®)	Error! Bookmark not defined.
Figure 5.5:ADC test with lm35 atmega16 (ISIS protus®)Error! Bookmark not
defined.	
Figure 5.6: THE FULL CIRCUIT DESIGN (ISIS protu	is®)Error! Bookmark not
defined.	
Figure 5.7: Mode 1 no movement case (ISIS protus $\ensuremath{\mathbb{B}}$)	Error! Bookmark not defined.
Figure 5.8: Mode 1 motor 1 leftwards movement (shoul	der) (ISIS protus®) Error!
Bookmark not defined.	
Figure 5.9: Mode 1 motor 1 rightwards movement (show	ılder) (ISIS protus®) Error!
Bookmark not defined.	
Figure 5.10: Mode 1 motor 2 upwards movement (should	der) (ISIS protus®) Error!
Bookmark not defined.	
Figure 5.11: Mode 1 motor 2 downwards movement (sh	oulder) (ISIS protus®) Error!
Bookmark not defined.	

Figure 5.12: Mode 1 motor 3 leftwards movement (elbow) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.13: Mode 1 motor 3 rightwards movement (elbow) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.14: Mode 1 motor 4 upwards movement (elbow) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.15: Mode 1 motor 4 downwards movement (elbow) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.16: Mode 1 motor 5 leftwards movement (wrist) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.17: Mode 1 motor 5 rightwards movement (wrist) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.18: Mode 1 motor 6 upwards movement (wrist) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.19: Mode 1 motor 6 downwards movement (wrist) (ISIS protus®) Error!
Bookmark not defined.
Figure 5.20: Mode 2 no detection for extra pressure nor heat (ISIS protus®) Error!
Bookmark not defined.
Figure 5.21: Mode 2 (extra pressure detected) motor 6 (wrist) downwards movement
(ISIS protus®) Error! Bookmark not defined.
Figure 5.22: Mode 2 extra heat detected motor 6 (wrist) downwards movement (ISIS
protus®) Error! Bookmark not defined.
Figure 5.23: Palmarus longus tension test, with the EMG outputError! Bookmark not
defined.
Figure 5.24: Biceps brachii tension test, with the EMG outputError! Bookmark not
defined.
Figure 5.25: Deltoid primary tension test, with the EMG output Error! Bookmark not
defined.
Figure 5.26: The kit used for EMG testing Error! Bookmark not defined.

List of figures

List of abbreviations:

ADC : Analog to digital convertor

ADCSRA : Analog to Digital Converter Control

Statues Register

ADSC : Analog to Digital Converter Start

Conversion.

ADEN : Analog to Digital Converter Enable

ADATE : Analog to Digital Converter Auto

Trigger Enable

ADHSM : Analog to Digital Converter High

Speed Mode

ADLAR : Analog to Digital Converter left Adjust

Result

ADMUX : Analog to Digital Converter

Multiplexer.

ADIF : Analog to Digital Converter Interrupt

Flag.

ADIE : Analog to Digital Converter Interrupt

Enable.

AVR : Advanced Virtual RISC.

AREF : Analog Reference

ADPS2 : Analog to Digital Converter Prescaler

Select Bits

ALU : Arithmetic Logic Unit

ATMAGA16 : Atmel 16 Mega

CICS : Complex Instruction Set Computer

CPU : Central Processing Unit

CMOS : Complementary Metal-Oxide

Semiconductor

CMR : Common Mode Rejection

EEPROM : Electric Erasable Programmable Read

Only Memory

EMG : Electromyography

GND : Ground

ISP : IN System Programmer

PIC : Peripheral Interface Controller

RISC: Reduced Instruction Set Computer

SPI : Serial Peripheral Interface

|--|

USART : Universal Synchronous Asynchronous Receiver/Transmitter

Chapter One

Introduction

Chapter one Introduction.

1.1 Background

Arm loss is a tragic case and it happens for many reasons, illness war or even accidents. Humans through history tried to reach a substitute to that part to make the individual able to look or function similar to normal.

As the technology evolution the traditional arm is no longer enough and below the needed tasks at capability limits, thus a modern function arm that can work as a replace for the lost arm and do moves based on nerves bases, which are to get the needed functionality on more of a natural form.

Prosthetics is part of the field of bio mechatronics, which aims to integrate mechanical, electrical and biological systems. They are typically used to replace appendages lost to injury, missing from birth, or to replace a defective body part. Prosthetics are important to improve amputees' lifestyles and in order to do so there have been many studies aimed at allowing control over the prosthetic appendage. In this report we will look at a myoelectric-controlled prosthetic hand.

The aim is to develop a prosthetic arm which can be controlled by signals from a set of muscles in the body using EMG signal, the arm will have a functional elbow, wrist and shoulder with two functions, the first function is to simulate the other arm of the user and the second is to sense the excess pressure and heat and make a reaction based on pre stored signals.

1.2 Problem Statement

The arm loss is a huge life changing experience, which makes life harder for the individual and limits the level of self-independency of any human, and as well may cause of harm or the inability to avoid danger. In Chapter one Introduction.

general life, many simple tasks become impossible for the human to do, such as lifting an object.

Old methods used a static prosthetic made of wood or metal, with evolution new light and strong fabrics appeared, yet that all was just a regular looks matter.

1.3 Proposed Solutions

To use myoelectric in designing an automatic control system and this system will be controlled by a microcontroller.

With technology evolution new changes were added, the microcontrollers and microcomputers are now available and with high performance range, motors and sensors, the sensors are great key in the prosthetic evolution. The ability of having a prosthetic arm that is able to function and to make moves based on natural responses (more than forced), and this would make a great help in the prosthetics evolution and it's affectivity in the daily life of humanity.

1.4 Research Aims and Objectives

Aims:

- To develop a hand that mirror's the move of the existing other hand.
- To get the hand to be able to interrupt the mirroring function for another robotic movement such as danger avoidance.

Chapter one Introduction.

Objectives:

- To proposed control system development.
- To simulate the proposed control system.
- To evaluate the proposed control system.
- To design the system.

1.5 Scope

This covers reading muscle signals and processing of this signal, sensing, programming the microcontroller using specific code and designing the arm using motors.

1.6 Methodology

The methodology used to accomplish the required objectives can be divided into three phases or stages.

- First stage: sensing and reading EMG (electromyography) signal, then amplify the signal so it can be readable by the micro-controller.
- Second stage: control the obtained signal from the first stage and the sensors using micro-controller.
- Third stage: finalization of the stages, using the output of the previous stage in the control of motors movement.

<u>Chapter one</u> <u>Introduction.</u>

1.7 Research Outlines

- Including this chapter the research includes another five :-
- Chapter two the literature reviews of the previous work and the history of the development done in the project's field, as well as the used components main description.
- Chapter three provides detailed description of the microcontroller, since it's the main control of the system.
- Chapter four the design is described for the technical aspect.
- Chapter five illustrates the simulation and results gained out of the project, as well explains the mechanism of operation.
- Chapter six the conclusion of the research and the recommendations for the progress and enhancement of the research.