Electronics Engineering Department Faculty of Engineering Sudan University of Science and Technology

Performance Evaluation of LTE Physical Layer Using OFDMA And SC FDMA

A Research Submitted In Partial fulfillment for the Requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Ayman Khalil Mohammed Khalil
- 2. Salama tag alassfia mhomed
- 3. Souffiane Abdou Abdallah
- 4. Wafeek Abdulgabbar Mohammed Ghalib

Supervised by:

Dr. Mohammed Hussein Mohammed

استهلال

بسم الله الرحمن الرحيم

(أَلَمْ تَرَ أَنَّ اللَّهَ أَنْزَلَ مِنَ السَّمَاء مَاء فَأَخْرَجْنَا بِهِ ثَمَرَاتٍ مُّخْتَلِفًا أَلْوَاتُهَا وَمِنَ الْجِبَالِ جُدَدٌ بيضٌ وَحُمْرٌ مُّخْتَلِفًا أَلْوَاتُهَا وَمِنَ الْجِبَالِ جُدَدٌ بيضٌ وَحُمْرٌ مُّخْتَلِفً أَلْوَاتُهَا وَعْرَابِيبُ سُودٌ وَمِنَ الثَّاسِ وَالدَّوَابِ مُخْتَلِفً أَلْوَاتُهُ كَذَلِكَ إِنَّمَا يَخْشَى اللَّهَ مِنْ وَالْأَنْعَامِ مُخْتَلِفً أَلُواتُهُ كَذَلِكَ إِنَّمَا يَخْشَى اللَّهَ مِنْ عَنُونٌ عَقُورٌ) عَبَادِهِ الْعُلْمَاء إِنَّ اللَّهَ عَزِينٌ عَقُورٌ)

Dedication

We dedicate this work to the souls of those whom we love since our childhood and it remains forever, our beloved mothers, fathers. the moments and days with them shall not be forgotten.

Acknowledgement

First of all we give thanks to Allah for blessing us and giving us the power to achieve this work. With a deep sense of gratitude, we wish to express our sincere thanks to our supervisor Dr. Mohamed Hussein Mohamed, we truly appreciate his esteemed guidance, encouragement and constructive criticisms from the beginning to the end of this thesis, without his help and support this thesis wouldn't has been done.

We would like to thank all people who support and motivate us to accomplish this work.

Most important of all, thanks to our families for their great support all the time.

Abstract

Since past few decades different types of cellular networks were launched and went successful on the radio links such as WiMAX, that became very popular because of its high data rate (70Mbps) and support for providing wireless internet services over 50km distance. The UMTS Long Term Evolution (LTE) is an emerging technology in the evolution of 3G cellular services. LTE runs on an evolution of the existing UMTS infrastructure already used by over 80 percent of mobile subscribers globally. We have very limited resources in cellular technologies and it is important to utilize them with high efficiency.

Single Carrier Frequency Division Multiple Access (SC-FDMA) & Orthogonal Division Multiple Access (OFDMA) are major part of LTE. OFDMA was well utilized for achieving high spectral efficiency in communication system. SC-FDMA is introduced recently and it became handy candidate for uplink multiple access scheme in LTE system that is a project of Third Generation Partnership Project (3GPP).

The Multiple Access Scheme in Advanced Mobile radio system has to meet the challenging requirements for example high throughput, good robustness, efficient Bit Error Rate (BER), high spectral efficiency, low delays, low computational complexity, low Peak to Average Power Ratio (PAPR), low error probability etc. Error probability is playing vital role in channel estimation and there are many ways to do channel estimation, like Wiener Channel Estimation, Bayesian Demodulation etc.

In our thesis, we investigate the performance of SC-FDMA and OFDMA of LTE physical layer by considering different modulation schemes (BPSK, QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA.

المستخلص

أطلقت منذ العقود السابقة أنواع مختلفة من الشبكات الخلوية ونجحت في الاتصالات الراديوية مثل شبكة واي ماكس التي أصبحت منتشرة جداً بسبب ارتفاع معدل نقل البيانات التي تصل إلى 70 ميجا بت للثانية كما أنها توفر خدمات الانترنت لاسلكياً لمسافة تصل لمسافة 50 كيلو متر.

الجيل الرابع (تطوير طويل الأجل) هي تقنية ناشئة من تطوير الجيل الثالث للخدمات الخلوية تعمل على تطوير البنية التحتية المستخدمة حالياً التي تمثل 80% من مستخدمين الهاتف النقال على مستوى العالم، لدنيا موارد بسيطة جداً في مجال التكنولوجيا الخلوية وانه من المهم الاستفادة منها بكفاءة عالية.

تقنية الوصول المتعدد ذات تردد الحامل الواحد وتقنية الوصول المتعدد ذات الترددات المتعامدة هما الجزء الأساسي في الجيل الرابع. تستخدم تقنية الوصول المتعدد ذات الترددات المتعامدة لتحقيق كفاءة طيفية عالية في نظام الاتصالات أما تقنية الوصول المتعدد ذات تردد الحامل الواحد عرضت مؤخراً واستخدمت لنظام الإرسال متعدد الوصول في الجيل الرابع (تطور طويل الأجل).

تقنية الوصول المتعدد في الأنظمة الراديوية المتنقلة المطورة تواجه تحديات لتلبية متطلبات صعبة على سبيل المثال إنتاجية عالية ، متانة جيدة ، كفاءة نسبة الخطأ في البت ، الكفاءة الطيفية العالية ، التأخير ، انخفاض التعديل الحسابي ، انخفاض الذروة إلى مستوى الطاقة وانخفاض احتمالية الخطأ. احتمال حدوث الخطأ يلعب دوراً حيوياً في تقييم القناة وهناك عدة طرق لتقييم القناة مثل وينير لتقيم القناة وبايزين الاستخلاص الخ.

في مشروعنا سنتحقق من كفاءة أدائية تقنية الوصول المتعدد ذو تردد الحامل الواحد. وتقنية الوصول المتعدد ذو الترددات المتعامدة في نظام الجيل الرابع (تطور طويل الأجل) باستخدام تقنيات تعديل مختلفة عن طريق الذروة على متوسط نسبة الطاقة ، نسبة الخطأ في البت ، كثافة قدرة الطاقة واحتمالية حدوث الخطأ وذلك بمحاكاة تقنية الوصول المتعدد ذات الترددات المتعامدة وتقنية الوصول المتعدد ذات تردد الحامل الواحد.

CONTENTS

I استهلال
Dedication II
Acknowledgement III
Abstract IV
V المستخلص
Contents VI
List of Tables X
List of Figures X
Abbreviations
CHAPTER ONE: INTRODUCTION
1.1 Preface
1.2 Problem statement
1.3 Proposed solution
1.4 Research Objective
1.5 Methodology 3
1.6 Research Outlines
CHAPTER TWO: Literature Review
2.1. Introduction
2.2 Motivation of LTE
2.3 LTE market and background
2.4 OFDMA

2.5 LTE Performance Demands
2.5.1 Date Rate
2.5.2 Bandwidth
2.5.3 Peak Spectral Efficiency
2.5.4 Spectral Efficiency of Cell Edge
2.5.5 Average Cell Spectral Efficiency
2.5.6 Latency
2.5.7 Security & Mobility
2.6 Frequency and Bandwidth10
2.7 Digital Modulation 12
2.7.1 Amplitude Shift Keying
2.7.2 Frequency Shift Keying
2.7.3 Phase Shift Keying (PSK)
2.7.3.1 Binary Phase Shift Keying (BPSK)
2.7.3.2 Quadrature Phase Shift Keying (QPSK)
2.7.4 Quadrature Amplitude Modulation (QAM)
2.7.5 Adaptive Modulation
2.8 Multiple Access Schemes
2.8.1 Time Division Multiple Access (TDMA)
2.8.2 Frequency Division Multiple Access (FDMA)
2.8.3 Code Division Multiple Access (CDMA)

2.8.4 Space Division Multiple Access (SDMA)
2.8.5 Orthogonal Frequency Division Multiple Access
2.8.6 Single Carrier Frequency Division Multiple Access19
2.9 OFDMA Basics
2.10 SC-FDMA Basics
2.11 Multiple Input Multiple Output (MIMO) Basics
CHAPTER THREE: LTE PHYSICAL LAYER
3. LTE physical layer
3.1 Physical layer parameters
3.2 Reference signals
3.2.1 Downlink Reference signals
3.2.2 Uplink reference signals
3.3 Synchronization sequences
3.4 Physical channels
3.4.1 Downlink Physical channels
3.4.1.1 Transport Channel
3.4.1.2 Control channels
3.4.2 Uplink physical channels

CHAPTER FOUR: SIMULATION AND RESULTS

4.1 Transmission Model of OFDMA and SC-FDMA
4.2 PAPR
4.3 BER 58
4.4 SNR 58
4.5 BER vs SNR process
4.6 Error Probability
4.7 Power Spectral Density
4.8 Simulation Results
4.8.1 BER vs SNR for OFDMA and SCFDMA
4.8.2 Error Probability for SC-FDMA and OFDMA
4.9 Power Spectral Density of OFDMA and SC-FDMA 64
4.10 PAPR of OFDMA and SC-FDMA for Adaptive Modulation65
4.10.1 BPSK and QPSK
4.10.2 QAM and 64-QAM
CHAPTER FIVE: CONCLUSION
5.1 Conclusion
5.2 Recommendations

LIST OF TABLES

Table 2-1: Band allocated specifically for LTE
Table 2-2: QPSK Signal Space Characteristics
Table 3-1: LTE Downlink Physical layer parameters
Table 3.2 Typical Number of PUCCH
Table 4-1: Parameters used for Simulation
LIST OF FIGURES
Figure 2-1: Driving LTE development
Figure 2-2: Amplitude Shift Keying
figure 2-3: Frequency Shift Keying
Figure 2-4: Phase Shift Keying
Figure 2-5: Binary Phase Shift Keying
Figure 2-6: Quadrature Phase Shift Keying Constellation 15
Figure 2-7: 16-QAM and 64-QAM
Figure 2-8:. Results of the FFT operation with different input 20
Figure 2-9: OFDMA transmitter and receiver
Figure 2-10: Creation of the guard interval for OFDM symbol 23
Figure 2-11: Reference symbols spread over OFDMA sub-carriers23
Figure 2-12: OFDMA transmitter with windowing for shaping
the spectral mask
Figure 2-13: OFDMA resource allocation in LTE 26

Figure 2-14:.OFDMA signal envelope characteristics
Figure 2-15: power amplifier back-off requirement for different input waveform
Figure 2-16: SC-FDMA transmitter and receiver with frequency domain signal generation
Figure 2-17: adjusting data rate in a SC-FDMA
Figure 2-18 Resource mapping in SC-FDMA
Figure 2-19: multiple accesses with resource sharing in the frequency domain with SC-FDMA and frequency domain signal generation 32
Figure 2-20: MIMO principle with two-by-two antenna configuration 34
Figure 2-21: OFDMA reference symbols to support two eNodeB transmit antennas
Figure 2-22: Multi-user MIMO principle with single transmit antenna devices
Figure 3-1: frame structure type 1 (FDD) frame
Figure 3-2- symbol structure
Figure 3-3: resource block and resource element definition(normal CP mode)
Figure 3-4: location of reference symbols within a resource block for a one antenna system in the case of a normal CP
Figure 3-5: uplink demodulation and sounding channel reference signals (normal CP mode)

Figure 3-6: synchronization signal frame and slot structure in time
domain
Figure 3-7: synchronization signals frame structure in frequency and
time domain
Figure 3-8: PBCH Structure
Figure 3-9: control channel signalling region (3OFDM symbol example)
51
Figure 3-10: physical uplink control channel structure53
Figure 3-11: random access preamble transmission
Figure 3-12: random access preamble
Figure 4-1: OFDMA transmission model
Figure 4-2: SC-FDMA transmission model
Figure 4-3: BER vs SNR of OFDMA with Adaptive Modulation 62
Figure 4-4: BER vs SNR of SC-FDMA with Adaptive Modulation 62
Figure 4-5: Error Probability of SC-FDMA
Figure 4-6: Error Probability of OFDMA
Figure 4-7: Power Spectral Density of OFDMA
Figure 4-8: Power Spectral Density of SC-FDMA
Figure 4-9: PAPR of OFDMA and SC-FDMA for BPSK
Figure 4-10: PAPR of OFDMA and SC-FDMA for QPSK 67
Figure 4-11 : PAPR of OFDMA and SC-FDMA for 16-QAM 68
Figure 4-12: PAPR of OFDMA and SC-FDMA for 64-QAM 68

ABBREVIATIONS

3GPP 3rd Generation Partnership Project

ACK Acknowledgment

ARQ Automatic Repeat Request

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CCE Control Channel Elements

CDMA Code Division Multiple Access

CP Cyclic Prefix

CQI Channel Quality Indicators

CDMA Code Division Multiple Access

CIR Channel Impulse Response

DCI Downlink Control Information

DFT Discrete Fourier Transform

DL Downlink

DM-RS Demodulation Reference Signals

FDD Frequency Division Duplex

FFT Fast Fourier Transform

FSK Frequency Shift Keying

GSM Global System for Mobile Communication

HARQ Hybrid Automatic Repeat Request

ICI Inter Carriers Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

ISI Inter Symbol Interference

LTE Long Term Evolution

MAC Medium Access Control Layer

MBMS Multimedia Broadcast and Multicast Services

MIB Master Information Block

MIMO Multiple Input Multiple Output

NACK Negative Acknowledgment

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiplex Access

PAPR Peak-to-Average Power Ratio

PBCH Physical Broadcast Channel

Pe Error Probability

PCFICH Physical Control Format Indicator Channel

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PDU Protocol Data Unit

PHICH Physical Hybrid ARQ Indicator Channel

PHY Physical Layer

PMI Precoding Matrix Indicator

PRACH Physical Random Access Channel

PSD Power Spectral Density

PSS Primary Synchronization Sequence

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

SC-FDMA Single Carrier Frequency Division Multiple Access

SFBC Space Frequency Block Code

SDMA Space Division Multiple Access

SNR Signal to Noise Ratio

SRS Sounding Reference Signal

SSS Synchronization Sequence

TB Transport Block

TDD Time Division Duplex

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunication System

WCDMA Wideband Code Division Multiple Access

Chapter One

Introduction

1.1 Preface

The long term evolution (LTE) is one of the latest steps in cellular 3G services. LTE is launched by 3rd Generation Partnership Project (3GPP) and that project was started in 2004. It brought many benefits to cellular networks in terms of bandwidth, latency, data rates, spectral efficiencies etc.

The OFDM is used in LTE as multiplexing scheme, LTE uses SC-FDMA for uplink and OFDMA for downlink transmission. SC-FDMA was introduced in LTE in order to save power from uplink transmission.

The LTE increases the system capacity and widens the spectrum from existing technology up to 20MHz. It can be deployed in any bandwidth combination because of its flexible usage of spectrum (1.4 MHz to 20 MHz). It uses Frequency Division Duplex (FDD) and Time Division Duplex (TDD) to suit all types of spectrum resources. [8]

1.2 Problem statement

A principal weakness of OFDM is the high peak-to-average power ratio (PAPR). The transmitted signal is the sum of all the modulated subcarriers and high amplitude peaks are inevitable because many of the subcarriers are in phase for some input sequences. The amplitude peaks impose a heavy burden on the power amplifier of a transmitter. Relative to time-domain transmission techniques, OFDM is also more vulnerable to frequency offset and frequency selective fading.

1.3 Proposed solution

OFDMA is well utilized for achieving high spectral efficiency in communication systems. To overcome the drawbacks of OFDMA specially the PAPR a modified form of OFDMA which referred to as Single Carrier Frequency Division Multiple Access (SC-FDMA) has proposed for uplink transmission.

1.4 Research Objectives:

- Using different modulation techniques (BPSK, QPSK, 16-QAM and 64-QAM) for the above two systems.
- To evaluate the performance of LTE physical layer in term of SNR, BER, PSD, PAPR and Probability of Error.

1.5 Methodology

MATLAB was used to simulate SC-FDMA and OFDMA systems with description of transmission and receiving processes with adaptive modulation techniques BPSK, QPSK, 16-QAM and 64-QAM. We have considered SNR, BER, PSD, bit error probability and PAPR parameters to evaluate the performance of LTE physical layer for both uplink and downlink.

1.6 Research Outlines

The following is the outline of the remainder of the thesis:

Chapter 2: introduces introduction and motivation of LTE, literature review, LTE performance demand, frequency and bandwidth, multiple access schemes of OFDMA and SC-FDMA and MIMO basics.

Chapter 3: discusses LTE physical layer in details.

Chapter 4: analyzes OFDMA and SC-FDMA system design and simulation results.

Chapter 5: introduces summary of the work and a few recommendations for future work.