
1

Introduction

1.1 Background

Short Message Service (SMS) is a feature in GSM

telecommunications that allows short, textual messages to be

delivered to cellular telephones.

SMS messages are transmitted over the control network, Signaling

System 7 (SS7), and not the bandwidth channels allotted to voice

communications. SS7 is the basis for all control networks used by all

major GSM and wire line telephone carriers.

SMS has several advantages. It is more discreet than a phone

conversation, making it the ideal form for communicating. SMS is a

store-and-forward service, In addition to person-to-person messages,

SMS can be used to send a message to a large number of people at a

time, either from a list of contacts or to all the users within a

particular area. This service is called broadcasting and is used by

companies to contact groups of employees or by online services to

distribute news and other information to subscribers.

Giving the PC ability to manage SMS, i.e. (send, receive, etc...)

Will open a whole new opportunities of creating new services,

commercial, bulk SMS, alarm systems … etc.

This feature is doable since many mobile and satellite transceiver

units support sending and receiving of SMS using an extended

version of the Hayes command set, a specific command language

originally developed for the Hayes Smartmodem 300-baud modem

in 1977.

2

1.2 Problem Statement

Managing (SMS) by using AT commands Technology using

different type of software and languages

1.3 Objective

Building a Table of comparison, for the different applications that

used the AT commands.

1.4 Methodology
We will send AT Commands from Application at the TE to the

GSM modem (MS), and read the Command result, we will be using

the AT commands that are related to SMS, which here will our area

of interest.

The design is divided into two elements, hardware and software.

The hardware components:

1- USB GSM Modem (Huawei 3G).

2- PC (TE)

FIGURE 1.1: Block diagram of interaction between TE and MS

The software:

MATLAB R2009a

3

Visual Studio 2012 C#

Visual Studio 2012 VB

1.5 Research plan

The details of the chapter, as follows:-

 Chapter two:

 Literature and review of GSM Technology, short messaging

service and the AT Command technology.

Chapter three:

 Case studies

Chapter four:

 Results and discussion

Chapter five:

Conclusion and Recommendations.

References.

4

2.Literature review

2.1 GSM

GSM (Global System for Mobile Communications: originally from

Groupe Spécial Mobile) is the most popular standard for mobile

telephony systems in the world. The GSM Association, its

promoting industry trade organization of mobile phone carriers and

manufacturers, estimates that 80% of the global mobile market uses

the standard.1 GSM is used by over 1.5 billion people across more

than 212 countries and territories its ubiquity enables international

roaming arrangements between mobile network operators, providing

subscribers the use of their phones in many parts of the world. GSM

differs from its predecessor technologies in that both signaling and

speech channels are digital, and thus GSM is considered a second

generation (2G) mobile phone system. This also facilitates the wide-

spread implementation of data communication applications into the

system

.

Figure 1.5: The GSM logo is used to identify compatible handsets and equipment

GSM network is a cellular network, which is a radio network

distributed over land areas called cells, each served by at least one

fixed-location transceiver known as a cell site or base station. When

joined together these cells provide radio coverage over a wide

geographic area. This enables a large number of portable

1

5

transceivers (e.g., mobile phones, pagers, etc.) to communicate with

each other and with fixed transceivers and telephones anywhere in

the network, via base stations, even if some of the transceivers are

moving through more than one cell during transmission .

2.1.1 Evolution of mobile networks

I. First-Generation Mobile Systems

The first generation of analog cellular systems included the

Advanced Mobile Telephone System (AMPS)1 which was made

available in 1983. A total of 40MHz of spectrum was allocated from

the 800MHz band by the Federal Communications Commission

(FCC) for AMPS. It was first deployed in Chicago, with a service area

of 2100 square miles2. AMPS offered 832 channels, with a data rate

of 10 kbps. Although omnidirectional antennas were used in the

earlier AMPS implementation, it was realized that using directional

antennas would yield better cell reuse. In fact, the smallest reuse

factor that would fulfill the 18db signal-to-interference ratio (SIR)

using 120-degree directional antennas was found to be 7. Hence, a

7-cell reuse pattern was adopted for AMPS. Transmissions from the

base stations to mobiles occur over the forward channel using

frequencies between 869-894 MHz. The reverse channel is used for

transmissions from mobiles to base station, using frequencies

between 824-849 MHz.

In Europe, TACS (Total Access Communications System) was

introduced with 1000 channels and a data rate of 8 kbps. AMPS and

TACS use the frequency modulation (FM) technique for radio

transmission. Traffic is multiplexed onto an FDMA (frequency

6

division multiple access) system. In Scandinavian countries, the

Nordic Mobile Telephone is used.

II. Second-Generation Mobile Systems

Compared to first-generation systems, second-generation (2G)

systems use digital multiple access technology, such as TDMA (time

division multiple access) and CDMA (code division multiple

access). Global System for Mobile Communications, or GSM3, uses

TDMA technology to support multiple users.

Examples of second-generation systems are GSM, Cordless

Telephone (CT2), Personal Access Communications Systems

(PACS), and Digital European Cordless Telephone (DECT4). A new

design was introduced into the mobile switching center of second-

generation systems. In particular, the use of base station controllers

(BSCs) lightens the load placed on the MSC (mobile switching

center) found in first-generation systems. This design allows the

interface between the MSC and BSC to be standardized. Hence,

considerable attention was devoted to interoperability and

standardization in second-generation systems so that carrier could

employ different manufacturers for the MSC and BSCs.

In addition to enhancements in MSC design, the mobile-assisted

handoff mechanism was introduced. By sensing signals received

from adjacent base stations, a mobile unit can trigger a handoff by

performing explicit signaling with the network.

Second generation protocols use digital encoding and include GSM,

D-AMPS (TDMA) and CDMA (IS-95). 2G networks are in current

use around the world. The protocols behind 2G networks support

voice and some limited data communications, such as Fax and short

7

messaging service (SMS), and most 2G protocols offer different

levels of encryption, and security. While first-generation systems

support primarily voice traffic, second-generation systems support

voice, paging, data, and fax services.

III. “2.5G” Mobile Systems

The move into the 2.5G world will begin with General Packet Radio

Service (GPRS). GPRS is a radio technology for GSM networks that

adds packet-switching protocols, shorter setup time for ISP

connections, and the possibility to charge by the amount of data sent,

rather than connection time. Packet switching is a technique whereby

the information (voice or data) to be sent is broken up into packets,

of at most a few Kbytes each, which are then routed by the network

between different destinations based on addressing data within each

packet. Use of network resources is optimized as the resources are

needed only during the handling of each packet.

The next generation of data heading towards third generation and

personal multimedia environments builds on GPRS and is known as

Enhanced Data rate for GSM Evolution (EDGE). EDGE will also be

a significant contributor in 2.5G. It will allow GSM operators to use

existing GSM radio bands to offer wireless multimedia IP-based

services and applications at theoretical maximum speeds of 384 kbps

with a bit-rate of 48 kbps per timeslot and up to 69.2 kbps per

timeslot in good radio conditions. EDGE will let operators function

without a 3G license and compete with 3G networks offering similar

data services. Implementing EDGE will be relatively painless and

will require relatively small changes to network hardware and

software as it uses the same TDMA (Time Division Multiple

Access) frame structure, logic channel and 200 kHz carrier

8

bandwidth as today's GSM networks. As EDGE progresses to

coexistence with 3G WCDMA, data rates of up to ATM-like speeds

of 2 Mbps could be available.

GPRS will support flexible data transmission rates as well as

continuous connection to the network. GPRS is the most significant

step towards 3G.

IV. Third-Generation Mobile Systems

Third-generation mobile systems are faced with several challenging

technical issues, such as the provision of seamless services across

both wired and wireless networks and universal mobility. In Europe,

there are three evolving networks under investigation: (a) UMTS

(Universal Mobile Telecommunications Systems), (b) MBS (Mobile

Broadband Systems), and (c) WLAN (Wireless Local Area

Networks).

V. Fourth generation of cellular wireless

It is a successor to 3G and 2G families of standards. which refers to

all-IP packet-switched networks, mobile ultra-broadband (gigabit

speed) access and multi-carrier transmission.[citation needed] Pre-

4G technologies such as mobile WiMAX and first-release 3G Long

term evolution (LTE) have been available on the market since 2006

and 2009 respectively.

 4G also refer to IMT-Advanced (International Mobile

Telecommunications Advanced), as defined by ITU-R. . An IMT-

Advanced cellular system must have target peak data rates of up to

approximately 100 Mbit/s for high mobility such as mobile access

and up to approximately 1 Gbit/s for low mobility such as

nomadic/local wireless access, according to the ITU requirements.

Scalable bandwidths up to at least 40 MHz should be provided.

9

In all suggestions for 4G, the CDMA spread spectrum radio

technology used in 3G systems and IS-95 is abandoned and replaced

by frequency-domain equalization schemes, for example multi-

carrier transmission such as OFDMA. This is combined with MIMO

(i.e., multiple antennas(Multiple In Multiple Out)), dynamic channel

allocation and channel-dependent scheduling.

2.1.2 The GSM network

The GSM network architecture (see Figure2) comprises several base

transceiver stations (BTS), which are clustered and connected to a

base station controller (BSC). Several BSCs are then connected to an

MSC. The MSC has access to several databases, including the

visiting location register (VLR), home location register (HLR), and

equipment identity register (EIR). It is responsible for establishing,

managing, and clearing connections, as well as routing calls to the

proper radio cell. It supports call rerouting at times of mobility. A

gateway MSC provides an interface to the public telephone network.

javascript:popUp('/content/images/chap1_0130078174/elementLinks/01fig02.gif')

11

Figure 2.1: The GSM network architecture

The GSM divides the infrastructure into the following three parts.

• Network Switching Subsystems (NSS)

• Base Station Subsystem (BSS)

• Network Management Subsystem (NMS)

If we count the Mobile Station (MS) or cell-phone is the 4th

element. Any telecommunications network requires some kind of

NMS. A part of NMS is generic for any telecom system. The billing

and messaging are two examples. The core of the NSS is the MSC

(Mobile Switching Center) which is basically a PSTN switch with

mobility management related enhancement/add-on. The BSS is

entirely new (compared to PSTN) that are required for wireless

access and mobility.

http://upload.wikimedia.org/wikipedia/commons/d/d1/Gsm_structures.svg

11

I. The Switching subsystem (NSS)

Fundamentally, the network and switching subsystems (NSS) is

responsible for call connection, supervision and release operations

between calling and called stations, where one or both of them are

mobile stations (MS). Other functions include:

• Handling short messages and packet data (email, fax and a variety

of notifications)

• Providing ‘bearer’ channel for data communications

• Maintaining database of its own users as well as visitors

• Variety of authentication and encryption

• Gateway to PSTN, other mobile networks and data networks

including the Internet

Home Location Register

The home location register (HLR) is a database used for storing and

managing subscriptions. Generally a PLMN (Public Land Mobile

Network) consists of several HLRs. The first two digits of the

mobile directory number (e.g. 0171 2620757) are the number of the

HLR where the mobile subscriber is stored. The data includes

permanent data on subscribers (such as subscriber's service profile)

as well as dynamic data (such as current location and activity status).

When an individual buys a subscription from one of the GSM

operators, he or she is registered in the HLR of that operator.

Mobile Switching Center (MSC) and Visitor Location Register

(VLR)

The mobile switching center (MSC) performs the telephony

switching function. A mobile station must be attached to a single

MSC at a time (either homed or visitor), if it is currently active (not

12

switched off). The visitor location register (VLR) is a database

attached to an MSC to contain information about its currently

associated mobile stations (not just for visitors).

Note: A basic switch (that is a PSTN/ISDN switch) already has a

database for its telephone connections. However, it is not designed to

include visitors since a visitor has telephone number that does not

belong to this switch. That is why a separate VLR is needed. An

MSC, with the help of the HLR, allocates a visitor a ‘local’

telephone number (the MSRN), which is not currently allocated to

anyone. This allocation is temporary (like visitor ID card). The VLR

stores the MSRN as mobile station’s telephone number (along with

other information). However, VLR also stores some information like

‘security triple’(authentication and encryption information) for each

mobile station that are currently attached to the MSC. A VLR stores

such information not only for its visitors but also for the homed

mobile stations. From this perspective VLR is for homed mobile

stations as well.

Authentication Center (AUC)

The authentication center (AUC) provides authentication and

encryption parameters that verify the user's identity and ensure the

confidentiality of each call. The AUC protects network operators

from different types of fraud found in today's cellular world. The

GSM has standard encryption and authentication algorithm which

are used to dynamically compute challenge keys and encryptions

keys for a call.

Equipment Identity Register (EIR)

The equipment identity register (EIR) is a database that contains

information about the identity of mobile equipment that prevents

13

calls from stolen, unauthorized, or defective mobile stations. The

AUC and EIR can be implemented as stand-alone nodes or as a

combined AUC/EIR node.

Base Station Subsystem (BSS)

All radio-related functions between mobile stations and network are

performed in the base station subsystem (BSS).

The BSS consists of:

Base Transceiver Station (BTS)

A Base Station Transceiver (BTS) is a radio transceivers station that

communicates with the mobile stations. Its backend is connected to

the BSC. More detail about BTS will be covered later. A BTS is

usually placed at the center of a cell. Its transmitting power defines

the size of a cell. There are more on this later.

Base Station Controller (BSC)

A Base Station Controller (BSC) is a high-capacity switch with radio

communication and mobility control capabilities. The functions of a

BSC include radio channel allocation, location update, handover,

timing advance, power control and paging.

Transcoder/Rate Adaptation Unit (TRAU)

The Transcoder/Rate Adaptation Unit (TRAU) is the data rate

conversion unit. The PSTN/ISDN switch is a switch for 64 kbps

voice. Current technology permits to decrease the bit-rate (in GSM

radio interface it is 13 kbps for full rate and 6.5 kbps for half rate).

Since MSC is basically a PSTN/ISDN switch its bit-rate is still 64

kbps. That is why a rate conversion is required in between the BSC

and MSC (see the figure below)

14

Figure 2.2: The Trans-coder/Rate Adaptation Unit

II. Network Management Subsystem (NMS)

Network Management Subsystem (NMS) includes network

management center (NMC), operations and maintenance center

(OMC) and a variety of other functions (see the network

infrastructure diagram at the beginning of this document). A

telecommunications network requires some kind of NMS. A part of

NMS is generic for any telecom system.

Operation and Support System (OSS)

The operation support system (OSS) is to do a variety of operation

and maintenance works such as commissioning and integrating new

network elements to the existing system, software upgrade,

collecting network performance statistics, reconfiguring network

dimension and frequency planning.

15

Short Message Center (SMC)

The SMC, also MXE, is a node that provides integrated voice, fax,

and data messaging. Specifically, the MXE handles short message

service, cell broadcast, voice mail, fax mail, e-mail, and notification.

And it will be discussed in more elaboration in the coming sections.

Intelligent Network

Like PSTN/ISDN the GSM system supports AIN (Advanced

Intelligent Network) services through its mobile intelligent services

node (MISN). This enables an operator to develop an innovative

service and deploy that in its network. The principle was that of

separation of the logic controlling services from the ‘basic’ call

control function in existing telephone exchanges.

Figure 2.3: IN control basic call

The SCP forms the control platform for IN. The IN control protocol

is the capability set that enables the operator to assert control over

the call. Various IN standards have defined an IN protocol.

2.2 SMS Service

Short Message Service (SMS) is a relatively new feature in wireless

telecommunications that allows short, textual messages to be

delivered to cellular telephones. SMS is extremely popular in Europe

16

and is gaining popularity in the US and worldwide. SMS messages

are transmitted over the control network, Signaling System 7 (SS7),

and not the bandwidth channels allotted to voice communications.

SS7 is the basis for all control networks used by all major wireless

and wire line telephone carriers. Disruption of SS7 operations could

be devastating to the PSN and to NS/EP. SMS and related services,

these additional features will greatly increase the resource

requirements over SMS and, when combined with increased

popularity, will impact the future load on SS7.

2.2.1 SMS Network element

Figure 2.5: SMS Network elements

Typical SMS network consist of:

BSS

All radio-related functions between mobile stations and network are

performed in the base station subsystem (BSS). Consists of:

17

(TRAU), (BTS) and (BSC), discussed in detail in section (1.1.3 The

GSM network) subsection II.

NSS

The network and switching subsystems (NSS) is responsible for call

connection, supervision and release operations between calling and

called stations, where one or both of them are mobile stations (MS),

also for delivering between the MS, SMC and other Network

element such HLR, BSC and MSC.

SMC

The Short Messages Center, also known as Short Messages Service

Center (SMSC). It is the network node that store and forwards the

subscribers SM. It also connect the SMEs, SMGW with PLMN. The

main role for the SMC is to store the messages from the sender,

charge it and then route the message to the correct destination at the

right time according to internal routing tables and scheduling

mechanism.

An SMS center (SMSC) is responsible for handling the SMS

operations of a wireless network:

When an SMS message is sent from a mobile phone, it will reach an

SMS center first.

The SMS center then forwards the SMS message towards the

destination.

The main duty of an SMSC is to route SMS messages and regulate

the process. If the recipient is unavailable (for example, when the

mobile phone is switched off), the SMSC will store the SMS

message. It will forward the SMS message when the recipient is

available.

18

Validity Period of an SMS Message - An SMS message is stored

temporarily in the SMS center if the recipient mobile phone is

offline. It is possible to specify a cutoff period after which the SMS

message will be deleted from the SMS center. Once deleted, the

SMS message will no longer be available for dispatch to the

recipient mobile phone (even if it becomes online).

The SMC uses the SMPP protocol for communicating with any

node, one of the STP functions in the SMS network is to act as

translation point between MAP/ss7 to IP based messages which it is

used in the typical SMC’s.

 SMGW

Is a node that connect an existing SMC of one operator with other

operators SMC’s. SMGW it is newly introduced and currently it is

the dominant of the SMS interconnection traffic since it is based on

IP connections it is so cheap in compare to the regular SS7 traffic

through voice signaling gateways. SMGW is the answer to the

question that always arise whenever there is disconnection in the

PSTN network that separate one network SG from establishing calls

with one or all operator. Still you can still find SMS traffic. SMGW

also communicate through SMPP protocol. And has ability buffer

and forward, not like the SMC which can store for long period and

forward according to specific predefined plan.

ESME

External Short Message Entity (ESME), any node that able to

communicate through SMPP, by mean of initiating an application

layer connection with an SMSC over a TCP/IP network connection

and then send and receive short messages to and from the SMSC

respectively.

19

An example for ESME could be Voice Mail server, it has SMPP

connection to the SMC from there can notify the subscriber about

them mail box status by sending them SMS.

Therefore IN is also EMSE capable since you got balance

notification in SMS format, a content provider such news agency

server is also ESME.

2.2.2 SMS Flow

The Short Message Service is realized by the use of the Mobile

Application Part (MAP) of the SS#7 protocol, with Short Message

protocol elements being transported across the network as fields

within the MAP messages. These MAP messages may be transported

using 'traditional' TDM based signalling, or over IP using SIGTRAN

and an appropriate adaptation layer. The Short Message protocol

itself is defined by 3GPP TS 23.040 for the Short Message Service -

Point to Point (SMS-PP), and 3GPP TS 23.041 for the Cell

Broadcast Service (CBS).

Four MAP procedures are defined for the control of the Short

Message Service:

Mobile Originated (MO), Mobile Terminated (MT), alert

procedure,And waiting data set procedure.

I. Mobile Originated (MO)

The diagram to the right depicts a simplified call flow for a

successful submission of a mobile originated short message.

When the subscriber sends a short message, the handset sends the

text message over the air interface to the VMSC/SGSN. Along with

the actual text of the short message, the destination address of the

21

SM and the address of the Short Message Service Centre (SMSC)

are included, the latter taken from the handset's configuration stored

on the SIM card.

Regardless of the air interface technology, the VMSC/SGSN invokes

the MAP service package

MAP_MO_FORWARD_SHORT_MESSAGE to send the text to the

Interworking MSC of the Service Centre whose address was

provided by the handset. This service sends the mo-ForwardSM.

MAP operation to the SMSC identified in the SM Submission from

the handset, embedded within a Transaction Capabilities Application

Part (TCAP) message, and transported over the core network using

the Signaling Connection Control Part (SCCP). The Interworking

MSC of the SMSC, on receipt of the MAP mo-ForwardSM message,

passes the SMS-PP Application Protocol Data Unit (APDU)

containing the text message to the actual Service Centre (SC) of the

SMSC for storing, and subsequent 'forwarding' (delivery) to the

destination address and the SC returns an acknowledgement

indicating success or failure. The message submission status is then

forwarded, over the air interface, to the subscriber's handset.

21

Figure2.6: MO call flow

II. Mobile Terminated (MT)

figure11 depicts a call flow for Mobile Terminated short message

delivery. For the sake of simplicity, some of the interactions between

the VMSC and VLR, and VMSC and Handset, have been omitted.

When the SMSC determines it needs to attempt to deliver a short

message to its destination, it will send the SMS-PP APDU

containing the text message, the 'B-Party' (destination phone

number) and other details to the Gateway MSC (GMSC) logical

component on the SMSC. The GMSC, on receipt of this short

message, needs to discover the location of the B-Party in order to be

able to correctly deliver the text to the recipient (the term Gateway

MSC, in this context, indicating an MSC that is obtaining routing

information from the Home Location Register (HLR)). To do this,

the GMSC invokes the MAP service package

MAP_SEND_ROUTING_INFO_FOR_SM, which sends a

sendRoutingInfoForSM (SRI-for-SM) MAP message to the

destination number's HLR, requesting their present location. This

http://upload.wikimedia.org/wikipedia/en/0/05/Mo_forward_sm.png

22

SRI-for-SM message may be sent to an HLR in the same network as

the SMSC, or via an interconnect to an HLR in a foreign PLMN,

depending on which network the destination subscriber belongs to.

The HLR performs a database lookup to retrieve the B-Party's

current location, and returns it in an acknowledgement message to

the SMSC's GMSC entity. The current location may be the MSC

address the subscriber is currently roaming on, the SGSN address, or

both. The HLR may also return a failure, if it considers the

destination to be unavailable for short messaging; see the Failed

short message delivery section below. Having obtained the routing

information from the HLR, the GMSC will attempt to deliver the

short message to its recipient. This is done by invoking the

MAP_MT_FORWARD_SHORT_MESSAGE service, which sends

a MAP mt-ForwardSMc message to the address returned by the

HLR, regardless of whether it is an MSC (Circuit Switched SMS

delivery) or an SGSN (Packet Switched SMS delivery).

The VMSC will request the information needed for it to deliver the

Short Message to its recipient by sending a

Send_Info_for_MT_SMS message to the VLR. The VLR will then

instigate a page request, or subscriber search, for the destination

subscriber's Mobile Subscriber ISDN Number (MSISDN), and return

the result to the VMSC.

23

Figure 1.5.7:: MT call flow

Since a typical deployment sees the VLR being co-located with the

MSC, this message flow is usually internal to the platform. Should

the page or search for the subscriber fail, the VLR will indicate the

failure cause to the VMSC which will abort the Short Message

delivery procedure and return the failure to the SMSC (see the Failed

short message delivery section below). If the page of the handset was

successful, the VMSC will then send to the SMSC indicating

successful delivery. The GMSC component of the SMSC passes the

result of the delivery attempt to the Service Centre. In the case of

successful delivery, the delivered text message will be removed from

the Store and Forward Engine (SFE) and, if requested, a delivery

report sent to the text originator. If the delivery failed, the SMSC

invokes a retry procedure to periodically make further attempts at

http://upload.wikimedia.org/wikipedia/en/c/c7/Mt_forward_sm.png

24

delivery; additionally, it may register with the HLR to receive a

notification when the B-Party becomes available for short message

delivery in the future (see the Failed short message delivery section

below).

III. Failed short message delivery

When the VMSC/SGSN indicates a short message delivery failure,

the SMSC may send a message to the HLR, using the

MAP_REPORT_SM_DELIVERY_STATUS procedure, indicating

the reason for the delivery failure and requesting that the SMSC be

put on a list of service centres wanting to be notified when the

destination party becomes available again. The HLR will set a flag

against the destination account, indicating that it is unavailable for

short message delivery, and store the SMSC's address in the

Message Waiting Data (MWD) list for the destination party. Valid

flags are Mobile Not Reachable Flag (MNRF), Memory Capacity

Exceeded Flag (MCEF) and Mobile Not Reachable for GPRS

(MNRG). The HLR will now start responding to SRI-for-SM

requests with a failure, indicating the failure reason, and will

automatically add the requesting SMSC's address to the MWD list

for the destination party. (However if the SRI-for-SM message has

priority flag set then the HLR will reply with VLR address if

available) The HLR may be informed of a subscriber becoming

available for short message delivery in several ways:

Where the subscriber has been detached from the network, a reattach

will trigger a Location Update to the HLR.

Where the subscriber has been out of coverage, but not fully

detached from the network, on coming back into coverage it will

respond to page requests from the Visitor Location Register (VLR).

25

The VLR will then send a Ready-for-SM (mobile present) message

to the HLR.

Where the MS has had its memory full, and the subscriber deletes

some texts, a Ready-for-SM (memory available) message is sent

from the VMSC/VLR to the HLR.

Upon receipt of an indication that the destination party is now ready

to receive short messages, the HLR sends an AlertSC MAP message

to each of the SMSCs registered in the MWD list for the subscriber,

causing the SMSC to start the Short Message delivery process again,

from the beginning.

Additionally, the SMSC will go into a retry schedule, attempting to

periodically deliver the SM without getting an alert. The retry

schedule interval will depend on the original failure cause - transient

network failures will result in short retry schedule, whereas out of

coverage will typically result in a longer schedule.

2.3 AT Commands

2.3.1 Hayes' commands

AT commands are used to control MODEMs. AT is the abbreviation

for Attention. These commands come from Hayes commands that

were used by the Hayes smart modems. The Hayes commands started

with AT to indicate the attention from the MODEM. The dial up and

wireless MODEMs (devices that involve machine to machine

communication) need AT commands to interact with a computer.

These include the Hayes command set as a subset, along with other

extended AT commands.

26

Prior to the introduction of the Bulletin Board System (BBS), modems

typically operated on direct-dial telephone lines that always began and

ended with a known modem at each end. The modems operated in

either "originate" or "answer" modes, manually switching between

two sets of frequencies for data transfer. Generally the user placing

the call would switch their modem to "originate" and then dial the

number by hand. When the remote modem answered, already set to

"answer" mode, the telephone handset was switched off and

communications continued until the caller manually disconnected.

When automation was required, it was commonly only needed on the

answer side - for instance, a bank might need to take calls from a

number of branch offices for end-of-day processing. To fill this role,

some modems included the ability to pick up the phone automatically

when it was in answer mode, clearing the line when the other user

manually disconnected. The need for automated outbound dialling

was considerably less common, and handled through a separate

peripheral device, a "dialler". This was normally plugged into a

separate input/output port on the computer (typically an RS-232 port)

and programmed separately from the modem itself.

This method of operation worked satisfactorily in the 1960s and early

1970s, when modems were generally used to connect dumb devices

like computer terminals (dialling out) with smart mainframe

computers (answering). However, the microcomputer revolution of

the 1970s led to the introduction of low-cost modems and the idea of a

semi-dedicated point-to-point link was no longer appropriate. There

were potentially thousands of users who might want to dial any of the

27

other thousands of users, and the only solution at the time was to

make the user dial manually.

The computer industry needed a way to tell the modem what number

to dial through software. The earlier separate dialers had this

capability, but only at the cost of a separate port, which a

microcomputer might not have available. Another solution would

have been to use a separate set of "command pins" dedicated to

sending and receiving commands, another could have used a signal

pin indicating that the modem should interpret incoming data as a

command. Both of these had hardware support in the RS-232

standard. However, many implementations of the RS-232 port on

microcomputers were extremely basic, and some eliminated many of

these pins as a cost saving measure.

2.3.2 Hayes' solution

Hayes Communications introduced a solution in its 1981

Smartmodem by re-using the existing data pins with no modification.

Instead, the modem itself could switch itself between one of two

modes:

1. data mode in which the modem sends the data to the remote

modem. (A modem in data mode treats everything it receives from the

computer as data and sends it across the phone line).

2. command mode in which data is interpreted as commands to

the local modem (commands that the local modem should execute).

To switch from data mode to command mode, sessions sent an escape

sequence string of three plus signs ("+++") followed by a pause of

http://en.wikipedia.org/wiki/Command_and_Data_modes_(modem)
http://en.wikipedia.org/wiki/Command_and_Data_modes_(modem)
http://en.wikipedia.org/wiki/Internationalization_and_localization
http://en.wikipedia.org/wiki/Escape_sequence
http://en.wikipedia.org/wiki/Escape_sequence

28

about a second. The pause at the end of the escape sequence was

required to reduce the problem caused by in-band signaling: if any

other data was received within one second of the three plus signs, it

was not the escape sequence and would be sent as data. To switch

back they sent the online command, O. In actual use many of the

commands automatically switched to the online mode after

completion, and it is rare for a user to use the online command

explicitly.

In order to avoid licensing Hayes's patent, some manufacturers

implemented the escape sequence without the time guard interval

(TIES). This had a major denial of service security implication in that

it would lead to the modem hanging up the connection should the

computer ever try to transmit the byte sequence "+++ATH0" in data

mode. For any computer connected to the Internet through such a

modem, this could be easily exploited by sending it a ping of

death request containing the sequence "+++ATH0" in the payload.

The computer operating system would automatically try to reply the

sender with the same payload, immediately disconnecting itself from

the Internet, as the modem would interpret the ICMPpacket's data

payload as a Hayes command.[1] The same error would also trigger if,

for example, the user of the computer ever tried to send an e-mail

containing the aforementioned string.

2.3.3 Commands

The Hayes command set includes commands for various phone-line

manipulations, dialing and hanging-up for instance. It also includes

various controls to set up the modem, including a set of register

commands which allowed the user to directly set the various memory

locations in the original Hayes modem. The command set was copied

http://en.wikipedia.org/wiki/In-band_signaling
http://en.wikipedia.org/wiki/Time_Independent_Escape_Sequence
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Ping_of_death
http://en.wikipedia.org/wiki/Ping_of_death
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/Hayes_command_set#cite_note-1

29

largely verbatim, including the meaning of the registers, by almost all

early 300 baud modem manufacturers, of which there were quite a

few.

The expansion to 1200 and 2400 baud required the addition of a small

set of new commands, some of them prefixed with an ampersand

("&") to denote those dedicated to new functionality. Hayes itself was

forced to quickly introduce a 2400 baud model shortly after their

1200, and the command sets were identical as a time-saving

method.[2] Essentially by accident, this allowed users of existing

1200 baud modems to use the new Hayes 2400 models without

changing their software. This re-inforced the use of the Hayes

versions of these commands. Years later, the TIA/EIA raised the

2400-baud command set into a formal standard with the title Data

Transmission Systems and Equipment - Serial Asynchronous

Automatic Dialing and Control, TIA/EIA-602.

However Hayes Communications moved only slowly to higher speeds

or the use of compression, and three other companies led the way here

– Microcom, U.S. Robotics and Telebit. Each of these three used its

own additional command-sets instead of waiting for Hayes to lead the

way. By the early-1990s there were four major command sets in use,

and a number of versions based on one of these. Things became

simpler again during the widespread introduction of 14.4 and 28.8

kbit/s modems in the early 1990s. Slowly a set of commands based

heavily on the original Hayes extended set using "&" commands

became popular, and then universal. Only one other command set has

remained popular, the US Robotics set from their popular line of

modems.

31

The following text lists part of the Hayes command set (also called the

AT commands: "AT" meaning attention).

The Hayes command set can subdivide into four groups:

I. basic command set - A capital character followed by a digit.

For example, M1.

II. extended command set - An “&” (ampersand) and a capital

character followed by a digit. This extends the basic command

set. For example, &M1. Note that M1 is different from &M1.

III. proprietary command set - Usually starting either with a

backslash (“\”) or with a percent sign (“%”); these commands

vary widely among modem-manufacturers.

IV. register commands - Sr=n where r is the number of the

register to be changed, and n is the new value that is assigned.

A register represents a specific physical location in memory. Modems

have small amounts of memory on board. The fourth set of commands

serves for entering values into a particular register (memory location).

The register will store a particular variable (alpha-numeric

information) which the modem and the communications software can

utilize. For example, S7=60 instructs the computer to "Set register #7

to the value 60".

Although the command-set syntax defines most commands by a letter-

number combination (L0, L1 etc.), the use of a zero is optional. In this

example, "L0" equates to a plain "L". Keep this in mind when reading

the table below.

When in data-mode an escape sequence can return the modem to

command mode. The normal escape sequence is three plus signs

31

("+++"), and to disambiguate it from possible real data, a guard timer

is used: it must be preceded by a pause, not have any pauses between

the plus signs, and be followed by a pause; by default a "pause" is one

second and "no pause" is anything less.

2.3.3.1 Syntactical definitions

The following syntactical definitions apply:

<CR> Carriage return character, is the command line and result code

terminator character, which value, in decimal ASCII between 0 and

255, is specified within parameter S3. The default value is 13.

<LF> Linefeed character, is the character recognised as line feed

character. Its value, in decimal ASCII between 0 and 255, is specified

within parameter S4. The default value is 10. The line feed character

is output after carriage return character if verbose result codes are

used (V1 option used) otherwise, if numeric format result codes are

used (V0 option used) it will not appear in the result codes.

<...> Name enclosed in angle brackets is a syntactical element. They

do not appear in the command line.

[...] Optional subparameter of a command or an optional part of TA

information response is enclosed in square brackets. Brackets

themselves do not appear in the command line. When subparameter is

not given in AT commands which have a Read command, new value

equals its previous value. In AT commands which do not store the

32

values of any of their subparameters, and so have not a Read

command, which are called action type commands, action should be

done on the basis of the recommended default setting of the

subparameter.

Modem initialization[edit]

For other uses, see initialization vector.

A string can contain many Hayes commands placed together, so as to

optimally prepare the modem to dial out or answer, e.g.

AT&F&D2&C1S0=0X4. This is called the initialization string.[4]

The V.250 specification requires all DCEs to accept a body (after

"AT") of at least 40 characters of concatenated commands.[5]

Example session[edit]

The following represents two computers, computer A and computer

B, both with modems attached, and the user controlling the modems

with terminal-emulator software. Terminal-emulator software

typically allows the user to send Hayes commands directly to the

modem, and to see the responses. In this example, the user of

computer A makes the modem dial the phone number of modem B at

phone number 555-1234 (long distance). Note that after every

command and response, there is a carriage return sent to complete the

command.

Modem A Modem B Comment

ATDT15551234 User at modem A issues a dial command:

AT-Get the modem's ATtention D-Dial T-Touch-Tone 15551234-Call

this number

33

RING Modem A begins dialing. Modem B's phone-line rings, and

the modem reports the fact.

ATA Computer at modem B issues answer command.

CONNECT CONNECT The modems connect, and both modems

report "connect". (In practice, most modems report more information

after the word CONNECT — specifying the speed of the connection.)

Also, at this time, both modems will raise the DCD, or Data Carrier

Detect signal, on the serial port.

abcdef abcdef When the modems are connected, any

characters typed at either side will appear on the other side. The

person at computer A starts typing. The characters pass through the

modem and appear on computer B's screen. (User A may not see his

own typed characters — depending on the terminal software's local

echo setting).

+++ The person at computer B issues the modem escape

command. (Alternately, and more commonly, the computer B could

drop the DTR, or Data Terminal Ready signal, to achieve a hangup,

without needing to use +++ or ATH.)

OK The modem acknowledges it.

ATH The person at computer B issues a hang up command.

NO CARRIER OK Both modems report that the connection has

ended. Modem B responds "OK" as the expected result of the

command; modem A says NO CARRIER to report that the remote

side interrupted the connection. The modems on both sides drop their

DCD signals as well.

34

2.3.3.2 Compatibility

While the original Hayes command set represented a huge leap

forward in modem-based communications, with time many problems

set in, almost none of them due to Hayes per se:

Due to the lack of a written standard, other modem manufacturers just

copied the external visible commands and (roughly) the basic actions.

This led to a wide variety of subtle differences in how modems

changed from state to state, and how they handled error conditions,

hangups, and timeouts.

Each manufacturer tended to add new commands to handle emerging

needs, often incompatible with other modems.

For example, setting up hardware or software handshaking often

required many different commands for different modems. This

undermined the handy universality of the basic "AT" command-set.

Many "Hayes-compatible" modems had serious quirks that made them

effectively incompatible. For example, many modems required a

pause of several seconds after receiving the "AT Z" reset command.

Some modems required spaces between commands, while others did

not. Some would unhelpfully change baud-rate of their own

"volition", which would leave the computer with no clue how to

handle the incoming bits.

As a result of all this, eventually many communications programs had

to give up any sense of being able to talk to all "Hayes-compatible"

modems, and instead the programs had to try to determine the modem

type from its responses, or provide the user with some option whereby

35

they could enter whatever special commands it took to coerce their

particular modem into acting properly.

2.3.3.3 The basic Hayes command set

The following commands are understood by virtually all modems

supporting an AT command set, whether old or new.

Table 2.1: The basic Hayes command set

Command Description Comments

A0 or A Answer incoming call

A/ Repeat last command
Don't preface with AT, don't follow with

carriage return. Enter usually aborts.

D Dial

Dial the following number and then

handshake

P - Pulse Dial

T - Touch Tone Dial

W - Wait for the second dial tone

R - Reverse to answer-mode after dialing

@ - Wait for up to 30 seconds for one or

more ringbacks

, - Pause for the time specified in register

S8 (usually 2 seconds)

; - Remain in command mode after

dialing.

! - Flash switch-hook (Hang up for a half

second, as in transferring a call.)

L - Dial last number

E0 or E No Echo Will not echo commands to the computer

E1 Echo
Will echo commands to the computer (so

one can see what one types)

36

H0 Hook Status
On hook. Hangs up the phone, ending

any call in progress.

H1 Hook status
Off hook. Picks up the phone line

(typically you'll hear a dialtone)

I0 to I9 Inquiry, Information, or Interrogation

This command returns information about

the model, such as its firmware or brand

name. Each number (0 to 9, and

sometimes 10 and above) returns one

line of modem-specific information, or the

word ERROR if the line isn't defined.

Today, Windows uses this for Plug-and-

play detection of specific modem types.

L0 or Ln(n=1

to 3)

Speaker Loudness. Supported only

by some modems, usually external

ones. Modems lacking speakers, or

with physical volume controls, or

ones whose sound output is piped

through the sound card will not

support this command.

Off or low volume

M0 or M
Speaker off, completely silent during

dialing

M3 is also common, but different on

many brands

M1

Speaker on until remote carrier detected

(i.e. until the other modem is heard)

M2

Speaker always on (data sounds are

heard afterCONNECT)

O Return Online

Returns the modem back to the normal

connected state after being interrupted

by the "+++" escape code.

Q0 or Q Quiet Mode
Off - Displays result codes, user sees

command responses (e.g. OK)

Q1 Quiet Mode
On - Result codes are suppressed, user

does not see responses.

Sn
Select current register

Note that Sn, ? and =r are actually

three separate commands, and can

be given in separate AT commands.

Select register n as the current register

Sn?

Select register n as the current register,

and query its value. Using ? on its own

will query whichever register was most

recently selected.

http://en.wikipedia.org/wiki/Plug-and-play
http://en.wikipedia.org/wiki/Plug-and-play

37

Sn=r

Select register n as the current register,

and store rin it. Using =r on its own will

store into whichever register was most

recently selected.

V0 or V Verbose Numeric result codes

V1

English result codes

(e.g. CONNECT, BUSY, NO

CARRIER etc.)

X0 or X Smartmodem
Hayes Smartmodem 300 compatible

result codes

X1

Usually adds connection speed to basic

result codes (e.g. CONNECT 1200)

X2

Usually adds dial tone detection

(preventing blind dial, and sometimes

preventing ATO)

X3

Usually adds busy signal detection.

X4

Usually adds both busy signal and dial

tone detection

Z0 or Z Reset

Reset modem to stored configuration.

Use Z0,Z1etc. for multiple profiles. This is

the same as &Ffor factory default on

modems without NVRAM (non volatile

memory)

2.3.3.4 Modem S register definitions

Table 02.2: Modem S register definitions

Register Description Range Default value

S0
Number of rings before

Auto-Answer
0–0 never 0

S1 Ring Counter 0–255 rings 0

http://en.wikipedia.org/wiki/NO_CARRIER
http://en.wikipedia.org/wiki/NO_CARRIER

38

S2 Escape character 0–255, ASCII decimal 43 ("+")

S3
Carriage Return

Character
0–127, ASCII decimal

13 (Carriage

Return)

S4 Line Feed Character 0–127, ASCII decimal 10 (Line Feed)

S5 Backspace Character 0–32, ASCII decimal 8 (Backspace)

S6
Wait Time before Blind

Dialing
2–255 seconds 2

S7
Wait for Carrier after

Dial
1–255 seconds 50

S8
Pause Time for Comma

(Dial Delay)
0–255 seconds 2

S9
Carrier Detect Response

Time
1–255 tenths of a seconds 6 (0.6 second)

S10
Delay between Loss of

Carrier and Hang-Up
1–255 tenths of a second 14 (1.4 seconds)

S11 DTMF Tone Duration 50–255 milliseconds 95 milliseconds

S12
Escape Code Guard

Time
0–255 fiftieths of a second 50 (1 second)

S18 Test Timer 0–255 seconds 0 seconds

S25 Delay to DTR 0–255 (seconds if synchronous mode,

hundredths of a second in all other

5

39

modes)

S26
RTS to CTS Delay

Interval
0–255 hundredths of a second

1 hundredth of a

second

S30
Inactivity Disconnect

Timer
0–255 tens of seconds 0 (disable)

S37
Desired Telco Line

Speed

0–10

Command options:

 0 Attempt auto mode

connection

 1 Attempt to connect at 300

bit/s

 2 Attempt to connect at 300

bit/s

 3 Attempt to connect at 300

bit/s

 5 Attempt to connect at 1200

bit/s

 6 Attempt to connect at 2400

bit/s

 7 Attempt to connect in V.23

75/1200 mode.

 8 Attempt to connect at 9600

bit/s

 9 Attempt to connect at 12000

bit/s

 10 Attempt to connect at

14400 bit/s

0

S38
Delay before Force

Disconnect
0–255 seconds 20 seconds

41

2.3.3.5 V.250

The ITU-T established a standard in its V-Series Recommendations,

V.25 ter, in 1995 in an attempt to establish a standard for the

command set again. It was renamed V.250 in 1998 with an annex that

was not concerning the Hayes command set renamed as V.251. A

V.250 compliant modem implements the A, D, E, H, I, L, M, N, O, P,

Q, T, V, X, Z, &C, &D, and &F commands in the way specified by

the standard. It must also implement S registers and must use registers

S0, S3, S4, S5, S6, S7, S8, and S10 for the purposes given in the

standard. Lastly it also must implement any command beginning with

the plus sign, "+" followed by any letter A to Z, only in accordance

with ITU recommendations. Modem manufacturers are free to

implement other commands and S-registers as they see fit, and may

add options to standard commands.

V.250 – Defined leading character sequences

Leading characters Includes commands related to

+A Call control (network Addressing) issues, common, PSTN,

ISDN,

+C Digital Cellular extensions

+D Data Compression, ITU-T Rec. V.42 bis

+E Error Control, ITU-T Rec. V.42

+F Facsimile, ITU-T Rec. T.30, etc.

+G Generic issues such as identity and capabilities

41

+I DTE-DCE Interface issues, ITU-T Rec. V.24, etc.

+M Modulation, ITU-T Rec. V.32 bis, etc.

+P PCM DCE commands, ITU-T Rec. V.92

+S Switched or Simultaneous Data Types

+T Test issues

+V Voice extensions

+W Wireless extensions

2.3.3.6 GSM

The ETSI GSM 07.07 (3GPP TS 27.007) specifies AT style commands

for controlling a GSM phone or modem. The ETSI GSM 07.05 (3GPP TS

27.005) specifies AT style commands for managing the SMS feature of

GSM.

Examples of GSM commands:

Table 2.3: GSM commands

Command Description

AT+CPIN=1234 Enter PIN code

AT+CPWD="SC","old","new" Change PIN code from 'old' to 'new'

AT+CLCK="SC",0,"1234" Remove PIN code

AT&V Status

http://en.wikipedia.org/wiki/Personal_identification_number

42

ATI
Status (Manufacturer, Model, Revision, IMEI,

capabilities)

AT+COPS=?

List available networks 0-Unknown/2-Current/3-

Forbidden, Longname, Shortname, Numerical-

ID, "AcT"

AT+CSQ
Get signal strength. Answer: +CSQ:

<rssi (more=better)>, <ber, less=better>

ATD*99# Dial access point

AT+CGDCONT=1,"IP","access.point.name" Defines PDP context[6]

GSM/3G modems typically support the ETSI GSM 07.07/3GPP TS

27.007 AT command set extensions, although how many commands are

implemented varies.

Most USB modem vendors, such as Huawei, Sierra Wireless, Option,

have also defined proprietary extensions for radio mode selection

(GSM/3G preference) or similar. Some recent high speed modems

provide a virtual Ethernet interface instead of using a PPP connection for

the data connection because of performance reasons (PPP connection is

only used between the computer and the modem, not over network). The

set-up requires vendor-specific AT command extensions. Sometimes the

specifications for these extensions are openly available, other times the

vendor requires an NDA for access to these.

http://en.wikipedia.org/wiki/International_Mobile_Equipment_Identity
http://en.wikipedia.org/wiki/Received_signal_strength_indication
http://en.wikipedia.org/wiki/Bit_error_ratio
http://en.wikipedia.org/wiki/GPRS_Core_Network#PDP_context
http://en.wikipedia.org/wiki/GPRS_Core_Network#PDP_context

43

3. Managing SMS using AT COMMANDS

3.1 Interfacing Principle

FIGURE 3.1: Block diagram of interaction between TE and MS

 Since the AT command is a packet transmitted via communication port,

the packet

size is limited. For the transmission of AT command, in addition to the

two characters “AT”, a maximum of 260 characters can be received

(including the empty characters at the end). For the “response” message

or URC reported by the board, the maximum length is limited to 668

characters.

Each command line can include only one AT command. For the URC

instruction or response reported from MS to TE, only one AT command

is allowed in a command line.

In order to make the commands and response formats more readable and

standard, except the original interfaces of Qualcomm, in all newly added

44

interfaces, e.g. no space can be contained in the commands such as

AT^XXX: <arg0>, <arg1>, or behind ^, colon or comma. No redundant

space is allowed at the head or end.

After delivering each AT command, the TE cannot deliver the second AT

command until the MS has made response to this AT command.

Otherwise, the

second AT command will not be executed.

For the AT command to which the response is given only after a long

time, in order to prevent interference on other events, it is recommended

to report the final execution result asynchronously. If the MS responds to

the TE only after a long time of waiting, e.g. the “AT+CCFC=?”

command receives a response only after a long time after the command is

delivered, the MS may have received the reported instruction of RING on

this occasion. Namely, the reporting of RING may interrupt other

responses, and other URCs will not interrupt the response of command,

and the interrupted part of the response will continue being reported.

Unless otherwise specified, all default codes between TE and MS take on

this

format: GSM 7 bit Default Alphabet. See also Section 6 in protocol

23.038. The

character @ is transmitted on the interface still according to 0x00 of 7bit

coding. The board software and API should be able to process this

character. The board uploads the carriage return character (<CR>) and

linefeed character (<LF>) in the string in the form of space.

45

A sort of compounding between quotation and comma cannot exist in the

string in this current version. For the data format of UCS2 code, the code

value should be

reported in the string format (if the code value is 0x553a, 553a should be

reported).

The “Possible response” sent from MS to TE is composed of

“Information text”

and “Result code”, where “Information text” is optional, and “Result

code” is mandatory.

3.2 Summary of commands:
Table 3.1: Summary of commands

Command Meaning

AT Attention (check)

ATI Manufacturer identification

AT+CIMI IMSI

AT+CPIN? Check PIN

AT+CSCA? Check SMC address

AT+CSCA= Set SMC address

at+cmgf=1 Message Mode

at+cmgs= Sending ”Set destination address”

[Ctrl+z] End Of message and execute sending

AT+CPMS? Check memory

at+cmgl="all" List All memory contents

at=cmgr=”N” Reading message in position N in the

memory

46

3.3 Case #1: Managing SMS via HyperTerminal

3.3.1 Checking the modem configuration

Figure 3.2: Checking the modem configuration

Figure 3.3: Checking the modem Speed

47

3.3.2 Connecting using the Hyper Terminal

Applying the port settings which you got from the previous step to

connect.

Figure 3.4: Setup Hyper Terminal

Start sending the commands and wait for response of each command

before sending the next command.

I AT

Command: AT

Figure 3.5: AT cmd result

II Manufacturer identification

Command: ATI

48

Figure 3.6: ATI cmd result

III IMSI

Command: AT+CIMI

Figure 3.7: AT+CIMI cmd result

IV PIN

Command: AT+CPIN?

Figure 3.8: AT+CPIN? Cmd result

V SMC address

Command: AT+CSCA? , AT+CSCA=”+249912020000”

49

Figure 3.9: AT+ CSCA? Cmd result

VI Message Mode

at+cmgf=1 (send SMS in text mode)

OK

VII Sending

at+cmgs=0912xxxxx

>

hello

 [Ctrl+z]

Fig 3.10: Sending cmd result

VIII Check SMS memory

Command: AT+CPMS?

51

Fig 3.11: AT+CPMS? cmd result

IX List Memory contents

Command: at+cmgl=? , at+cmgl="all"

Fig 3.12: AT+CMGL=”ALL” cmd result

X Reading

Command: at=cmgr=”0”

Fig 3.13: AT+CMGL=”ALL” cmd result

3.4 Case#2: Managing SMS via Matlab

3.4.1 Getting INFO
clc;

clear all;

global BytesAvail;

global A;

global B;

tx ='ATI';

tx1=char(13);

51

tx5='AT+CMGF=1';

tx2='AT+CIMI ';
s = serial('COM5');

s.baudrate=9600;

fopen(s);

s.Terminator = 'CR';

fprintf(s,'%s', tx);

fprintf(s,'%s', tx1);

BytesAvail=s.BytesAvailable;

 if(BytesAvail > 0), A=fread(s,BytesAvail,'char'); end

A;

sprintf('%c', A)

fprintf(s,'%s', tx2);

fprintf(s,'%s', tx1);

BytesAvail=s.BytesAvailable;

 if(BytesAvail > 0), B=fread(s,BytesAvail,'char'); end

B;

sprintf('%c', B)

fclose(s)

Fig 3.14: MATLAB COMMAND WINDOW

52

3.4.2 Sending

clc;

clear all;

global BytesAvail;

global A;

tx1=char(13);

tx2=char(26);

tx3='AT+CMGS="0912xxxxxx"';

tx4='This is a test msg';

tx5='AT+CMGF=1';

s = serial('COM5');

s.baudrate=9600;

fopen(s);

s.Terminator = 'CR';

fprintf(s,'%s', tx5);

fprintf(s,'%s', tx1);

fprintf(s,'%s', tx3);

fprintf(s,'%s', tx1);

fprintf(s,'%s', tx4);

fprintf(s,'%s', tx2);

BytesAvail=s.BytesAvailable;

 if(BytesAvail > 0), A=fread(s,BytesAvail,'char'); end

A;

fclose(s)

Fig 3.15: MATLAB COMMAND WINDOW

53

3.4.3 Listing

clc;

clear all;

global BytesAvail;

global A;

tx='AT+CMGL=?';

tx1=char(13);

tx5='AT+CMGF=1';

s = serial('COM5');

s.baudrate=9600;

fopen(s);

s.Terminator = 'CR';

fprintf(s,'%s', tx5);

fprintf(s,'%s', tx1);

fprintf(s,'%s', tx);

fprintf(s,'%s', tx1);

BytesAvail=s.BytesAvailable;

if(BytesAvail > 0), A=fread(s,BytesAvail,'char'); end

A;

sprintf('%c', A)

fclose(s)

Fig 3.16: MATLAB COMMAND CMGL result

54

3.4.4 Reading

clc;

clear all;

global BytesAvail;

global A;

tx ='at+cmgr=2';

tx1=char(13);

tx5='AT+CMGF=1';

s = serial('COM5'); % You have to replace this with your

3G modem's COMport number

s.baudrate=9600;

fopen(s);

s.Terminator = 'CR';

fprintf(s,'%s', tx5);

fprintf(s,'%s', tx1);

fprintf(s,'%s', tx);

fprintf(s,'%s', tx1);

BytesAvail=s.BytesAvailable;

 if(BytesAvail > 0), A=fread(s,BytesAvail,'char'); end

A;

sprintf('%c', A)

fclose(s)

Fig 3.17: MATLAB COMMAND CMGR result

55

3.5 Case#3: Managing SMS via C#

3.5.1 Connecting to serial port

Fig 3.18: (AI SMS APP – connecting to serial port)

 private void btnOK_Click(object sender, EventArgs e)

 {

 try

 {

 //Open communication port

 this.port =

objclsSMS.OpenPort(this.cboPortName.Text,

Convert.ToInt32(this.cboBaudRate.Text),

Convert.ToInt32(this.cboDataBits.Text),

Convert.ToInt32(this.txtReadTimeOut.Text),

Convert.ToInt32(this.txtWriteTimeOut.Text));

 if (this.port != null)

 {

this.gboPortSettings.Enabled = false;

//MessageBox.Show("Modem is connected at PORT " +

this.cboPortName.Text);

this.statusBar1.Text = "Modem is connected at PORT " +

this.cboPortName.Text;

this.btnDisconnect.Enabled = true;

 }

 else

 {

56

//MessageBox.Show("Invalid port settings");

this.statusBar1.Text = "Invalid port settings";

 }

 }

 catch (Exception ex)

 {

 ErrorLog(ex.Message);

 }}

3.5.2 Getting Info

Fig 3.19: (AI SMS APP – Getting info)

private void tabSMSapplication_Selected(object sender,

TabControlEventArgs e)

 {

 string input = objclsSMS.ExecCommand(port,

"ATI", 5000, "Failed to execute command");

 this.textBox1.Text = input;

 input = objclsSMS.ExecCommand(port,

"AT+CIMI", 5000, "Failed to execute command");

 this.textBox1.Text += "IMSI:" + input;

 input = objclsSMS.ExecCommand(port,

"AT+CPIN?", 5000, "Failed to execute command");

 this.textBox1.Text += "PIN:" + input;

 input = objclsSMS.ExecCommand(port,

"AT+CSCA?", 5000, "Failed to execute command");

 this.textBox1.Text += "SMC Adress:" + input;

 }

57

3.5.3 Sending

Fig 3.20: (AI SMS APP – Sending)

 private void btnSendSMS_Click(object sender, EventArgs

e)

 {

//.. Send SMS

..

 try

 {

 if (objclsSMS.sendMsg(this.port,

this.txtSIM.Text, this.txtMessage.Text))

 {

//MessageBox.Show("Message has sent successfully");

this.statusBar1.Text = "Message has sent successfully";

 }

 else

 {

//MessageBox.Show("Failed to send message");

this.statusBar1.Text = "Failed to send message";

 }

 }

58

 catch (Exception ex)

 {

 ErrorLog(ex.Message);

 }

 }

3.5.3 Reading

Fig 3.21: (AI SMS APP – Reading)

private void btnReadSMS_Click(object sender, EventArgs e)

 {

 lvwMessages.Items.Clear();

 try

 {

//count SMS

int uCountSMS = objclsSMS.CountSMSmessages(this.port);

if (uCountSMS > 0)

{

#region Command

string strCommand = "AT+CMGL=\"ALL\"";

if (this.rbReadAll.Checked)

{

strCommand = "AT+CMGL=\"ALL\"";

}

else if (this.rbReadUnRead.Checked)

59

{

strCommand = "AT+CMGL=\"REC UNREAD\"";

}

else if (this.rbReadStoreSent.Checked)

{

strCommand = "AT+CMGL=\"STO SENT\"";

}

else if (this.rbReadStoreUnSent.Checked)

{

strCommand = "AT+CMGL=\"STO UNSENT\"";

}

else if (this.ReadReadSMS.Checked)

{

strCommand = "AT+CMGL=\"REC READ\"";

}

#endregion

// If SMS exist then read SMS

#region Read SMS

objShortMessageCollection = objclsSMS.ReadSMS(this.port,

strCommand);

foreach (ShortMessage msg in objShortMessageCollection)

{

ListViewItem item = new ListViewItem(new string[] {

msg.Index, msg.Sent, msg.Sender, msg.Message });

item.Tag = msg;

lvwMessages.Items.Add(item);

}

#endregion

 }

 else

 {

lvwMessages.Clear();

//MessageBox.Show("There is no message in SIM");

this.statusBar1.Text = "There is no message in SIM";

 }

 }

 catch (Exception ex)

 {

 ErrorLog(ex.Message); }}

61

3.5.4 Deleting

Fig 3.22: (AI SMS APP – Deleting)

 private void btnDeleteSMS_Click(object sender, EventArgs e)
 {
 try
 {
 //Count SMS
 int uCountSMS = objclsSMS.CountSMSmessages(this.port);
 if (uCountSMS > 0)
 {
DialogResult dr = MessageBox.Show("Are u sure u want to delete the SMS?", "Delete
confirmation", MessageBoxButtons.YesNo);

if (dr.ToString() == "Yes")
{
#region Delete SMS

if (this.rbDeleteAllSMS.Checked)
{
//...Delete all SMS
..

#region Delete all SMS
string strCommand = "AT+CMGD=1,4";
if (objclsSMS.DeleteMsg(this.port, strCommand))
{
//MessageBox.Show("Messages has deleted successfuly ");
this.statusBar1.Text = "Messages has deleted successfuly";
}
else
{
//MessageBox.Show("Failed to delete messages ");
this.statusBar1.Text = "Failed to delete messages";
}
#endregion

61

}
else if (this.rbDeleteReadSMS.Checked)
{
//...Delete Read SMS

#region Delete Read SMS
string strCommand = "AT+CMGD=1,3";
if (objclsSMS.DeleteMsg(this.port, strCommand))
{
//MessageBox.Show("Messages has deleted successfuly");
this.statusBar1.Text = "Messages has deleted successfuly";
}
else
{
//MessageBox.Show("Failed to delete messages ");
this.statusBar1.Text = "Failed to delete messages";
}
#endregion
}
#endregion
}
 }
 }
 catch (Exception ex)
 {
 ErrorLog(ex.Message);
 }}

3.5.5 SMS APP (complete source C# code)
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.IO.Ports;

namespace SMSapplication

{

public partial class SMSapplication : Form

{

#region Constructor

public SMSapplication()

{

InitializeComponent();

}

#endregion

#region Private Variables

SerialPort port = new SerialPort();

clsSMS objclsSMS = new clsSMS();

ShortMessageCollection objShortMessageCollection = new

ShortMessageCollection();

#endregion

#region Private Methods

#region Write StatusBar

62

private void WriteStatusBar(string status)

{

try

{

statusBar1.Text = "Message: " + status;

}

catch (Exception ex)

{

}

}

#endregion

#endregion

#region Private Events

private void SMSapplication_Load(object sender, EventArgs e)

{

try

{

#region Display all available COM Ports

string[] ports = SerialPort.GetPortNames();

// Add all port names to the combo box:

foreach (string port in ports)

{

this.cboPortName.Items.Add(port);

}

#endregion

this.btnDisconnect.Enabled = false;

}

catch(Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnOK_Click(object sender, EventArgs e)

{

try

{

//Open communication port

this.port = objclsSMS.OpenPort(this.cboPortName.Text,

Convert.ToInt32(this.cboBaudRate.Text),

Convert.ToInt32(this.cboDataBits.Text),

Convert.ToInt32(this.txtReadTimeOut.Text),

Convert.ToInt32(this.txtWriteTimeOut.Text));

if (this.port != null)

{

this.gboPortSettings.Enabled = false;

//MessageBox.Show("Modem is connected at PORT " +

this.cboPortName.Text);

this.statusBar1.Text = "Modem is connected at PORT " +

this.cboPortName.Text;

this.lblConnectionStatus.Text = "Connected at " +

this.cboPortName.Text;

this.btnDisconnect.Enabled = true;

}

else

63

{

//MessageBox.Show("Invalid port settings");

this.statusBar1.Text = "Invalid port settings";

}

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnDisconnect_Click(object sender, EventArgs e)

{

try

{

this.gboPortSettings.Enabled = true;

objclsSMS.ClosePort(this.port);

this.lblConnectionStatus.Text = "Not Connected";

this.btnDisconnect.Enabled = false;

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnSendSMS_Click(object sender, EventArgs e)

{

//... Send SMS

try

{

if (objclsSMS.sendMsg(this.port, this.txtSIM.Text,

this.txtMessage.Text))

{

//MessageBox.Show("Message has sent successfully");

this.statusBar1.Text = "Message has sent successfully";

}

else

{

//MessageBox.Show("Failed to send message");

this.statusBar1.Text = "Failed to send message";

}

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnReadSMS_Click(object sender, EventArgs e)

{

lvwMessages.Items.Clear();

try

{

//count SMS

int uCountSMS = objclsSMS.CountSMSmessages(this.port);

if (uCountSMS > 0)

{

#region Command

string strCommand = "AT+CMGL=\"ALL\"";

64

if (this.rbReadAll.Checked)

{

strCommand = "AT+CMGL=\"ALL\"";

}

else if (this.rbReadUnRead.Checked)

{

strCommand = "AT+CMGL=\"REC UNREAD\"";

}

else if (this.rbReadStoreSent.Checked)

{

strCommand = "AT+CMGL=\"STO SENT\"";

}

else if (this.rbReadStoreUnSent.Checked)

{

strCommand = "AT+CMGL=\"STO UNSENT\"";

}

else if (this.ReadReadSMS.Checked)

{

strCommand = "AT+CMGL=\"REC READ\"";

}

#endregion

// If SMS exist then read SMS

#region Read SMS

//.. Read all SMS

..

objShortMessageCollection = objclsSMS.ReadSMS(this.port, strCommand);

foreach (ShortMessage msg in objShortMessageCollection)

{

ListViewItem item = new ListViewItem(new string[] { msg.Index,

msg.Sent, msg.Sender, msg.Message });

item.Tag = msg;

lvwMessages.Items.Add(item);

}

#endregion

}

else

{

lvwMessages.Clear();

//MessageBox.Show("There is no message in SIM");

this.statusBar1.Text = "There is no message in SIM";

}

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnDeleteSMS_Click(object sender, EventArgs e)

{

try

{

//Count SMS

int uCountSMS = objclsSMS.CountSMSmessages(this.port);

if (uCountSMS > 0)

{

65

DialogResult dr = MessageBox.Show("Are u sure u want to delete the

SMS?", "Delete confirmation", MessageBoxButtons.YesNo);

if (dr.ToString() == "Yes")

{

#region Delete SMS

if (this.rbDeleteAllSMS.Checked)

{

//...Delete all SMS

..

#region Delete all SMS

string strCommand = "AT+CMGD=1,4";

if (objclsSMS.DeleteMsg(this.port, strCommand))

{

//MessageBox.Show("Messages has deleted successfuly ");

this.statusBar1.Text = "Messages has deleted successfuly";

}

else

{

//MessageBox.Show("Failed to delete messages ");

this.statusBar1.Text = "Failed to delete messages";

}

#endregion

}

else if (this.rbDeleteReadSMS.Checked)

{

//...Delete Read SMS

..

#region Delete Read SMS

string strCommand = "AT+CMGD=1,3";

if (objclsSMS.DeleteMsg(this.port, strCommand))

{

//MessageBox.Show("Messages has deleted successfuly");

this.statusBar1.Text = "Messages has deleted successfuly";

}

else

{

//MessageBox.Show("Failed to delete messages ");

this.statusBar1.Text = "Failed to delete messages";

}

#endregion

}

#endregion

}

}

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

private void btnCountSMS_Click(object sender, EventArgs e)

{

try

66

{

//Count SMS

int uCountSMS = objclsSMS.CountSMSmessages(this.port);

this.txtCountSMS.Text = uCountSMS.ToString();

}

catch (Exception ex)

{

ErrorLog(ex.Message);

}

}

#endregion

#region Error Log

public void ErrorLog(string Message)

{

StreamWriter sw = null;

try

{

WriteStatusBar(Message);

string sLogFormat = DateTime.Now.ToShortDateString().ToString() + " "

+ DateTime.Now.ToLongTimeString().ToString() + " ==> ";

//string sPathName = @"E:\";

string sPathName = @"SMSapplicationErrorLog_";

string sYear = DateTime.Now.Year.ToString();

string sMonth = DateTime.Now.Month.ToString();

string sDay = DateTime.Now.Day.ToString();

string sErrorTime = sDay + "-" + sMonth + "-" + sYear;

sw = new StreamWriter(sPathName + sErrorTime + ".txt", true);

sw.WriteLine(sLogFormat + Message);

sw.Flush();

}

catch (Exception ex)

{

//ErrorLog(ex.ToString());

}

finally

{

if (sw != null)

{

sw.Dispose();

sw.Close();

}

}

}

#endregion

private void tabSMSapplication_Selected(object sender,

TabControlEventArgs e)

{

string input = objclsSMS.ExecCommand(port, "ATI", 5000, "Failed to

execute command");

67

this.textBox1.Text = input;

input = objclsSMS.ExecCommand(port, "AT+CIMI", 5000, "Failed to

execute command");

this.textBox1.Text += "IMSI:" + input;

input = objclsSMS.ExecCommand(port, "AT+CPIN?", 5000, "Failed to

execute command");

this.textBox1.Text += "PIN:" + input;

input = objclsSMS.ExecCommand(port, "AT+CSCA?", 5000, "Failed to

execute command");

this.textBox1.Text += "SMC Adress:" + input;

}

private void tabInfo_Click(object sender, EventArgs e)

{

}

private void textBox1_TextChanged(object sender, EventArgs e)

{

}

private void button2_Click(object sender, EventArgs e)

{

string input = objclsSMS.ExecCommand(port, "ATI", 5000, "Failed to

execute command");

this.textBox1.Text = input;

input = objclsSMS.ExecCommand(port, "AT+CIMI", 5000, "Failed to

execute command");

this.textBox1.Text += "IMSI:" + input;

input = objclsSMS.ExecCommand(port, "AT+CPIN?", 5000, "Failed to

execute command");

this.textBox1.Text += "PIN:" + input;

input = objclsSMS.ExecCommand(port, "AT+CSCA?", 5000, "Failed to

execute command");

this.textBox1.Text += "SMC Adress:" + input;

}

private void button1_Click(object sender, EventArgs e)

{

string input = objclsSMS.ExecCommand(port,

"AT+CSCA=this.textBox3.Text", 5000, "Failed to execute command");

}

}

}

Class clsSMS.cs

using System;

using System.Collections.Generic;

using System.ComponentModel;

68

using System.Data;

using System.Drawing;

using System.Text;

using System.IO.Ports;

using System.Threading;

using System.Text.RegularExpressions;

namespace SMSapplication

{

public class clsSMS

{

#region Open and Close Ports

//Open Port

public SerialPort OpenPort(string p_strPortName, int p_uBaudRate, int

p_uDataBits, int p_uReadTimeout, int p_uWriteTimeout)

{

receiveNow = new AutoResetEvent(false);

SerialPort port = new SerialPort();

try

{

port.PortName = p_strPortName; //COM1

port.BaudRate = p_uBaudRate; //9600

port.DataBits = p_uDataBits; //8

port.StopBits = StopBits.One; //1

port.Parity = Parity.None; //None

port.ReadTimeout = p_uReadTimeout; //300

port.WriteTimeout = p_uWriteTimeout; //300

port.Encoding = Encoding.GetEncoding("iso-8859-1");

port.DataReceived += new

SerialDataReceivedEventHandler(port_DataReceived);

port.Open();

port.DtrEnable = true;

port.RtsEnable = true;

}

catch (Exception ex)

{

throw ex;

}

return port;

}

//Close Port

public void ClosePort(SerialPort port)

{

try

{

port.Close();

port.DataReceived -= new

SerialDataReceivedEventHandler(port_DataReceived);

port = null;

}

catch (Exception ex)

{

throw ex;

}

}

#endregion

69

//Execute AT Command

public string ExecCommand(SerialPort port,string command, int

responseTimeout, string errorMessage)

{

try

{

port.DiscardOutBuffer();

port.DiscardInBuffer();

receiveNow.Reset();

port.Write(command + "\r");

string input = ReadResponse(port, responseTimeout);

if ((input.Length == 0) || ((!input.EndsWith("\r\n> ")) &&

(!input.EndsWith("\r\nOK\r\n"))))

throw new ApplicationException("No success message was received.");

return input;

}

catch (Exception ex)

{

throw ex;

}

}

//Receive data from port

public void port_DataReceived(object sender,

SerialDataReceivedEventArgs e)

{

try

{

if (e.EventType == SerialData.Chars)

{

receiveNow.Set();

}

}

catch (Exception ex)

{

throw ex;

}

}

public string ReadResponse(SerialPort port,int timeout)

{

string buffer = string.Empty;

try

{

do

{

if (receiveNow.WaitOne(timeout, false))

{

string t = port.ReadExisting();

buffer += t;

}

else

{

if (buffer.Length > 0)

throw new ApplicationException("Response received is incomplete.");

else

throw new ApplicationException("No data received from phone.");

}

}

71

while (!buffer.EndsWith("\r\nOK\r\n") && !buffer.EndsWith("\r\n> ")

&& !buffer.EndsWith("\r\nERROR\r\n"));

}

catch (Exception ex)

{

throw ex;

}

return buffer;

}

#region Count SMS

public int CountSMSmessages(SerialPort port)

{

int CountTotalMessages = 0;

try

{

#region Execute Command

string recievedData = ExecCommand(port, "AT", 300, "No phone

connected at ");

recievedData = ExecCommand(port, "AT+CMGF=1", 300, "Failed to set

message format.");

String command = "AT+CPMS?";

recievedData = ExecCommand(port, command, 1000, "Failed to count SMS

message");

int uReceivedDataLength = recievedData.Length;

#endregion

#region If command is executed successfully

if ((recievedData.Length >= 5) && (recievedData.Contains("CPMS")))

{

#region Parsing SMS

string[] strSplit = recievedData.Split(',');

string strMessageStorageArea1 = strSplit[0]; //SM

string strMessageExist1 = strSplit[1]; //Msgs exist in SM

#endregion

#region Count Total Number of SMS In SIM

CountTotalMessages = Convert.ToInt32(strMessageExist1);

#endregion

}

#endregion

#region If command is not executed successfully

else if (recievedData.Contains("ERROR"))

{

#region Error in Counting total number of SMS

string recievedError = recievedData;

recievedError = recievedError.Trim();

recievedData = "Following error occured while counting the message" +

recievedError;

#endregion

}

#endregion

71

return CountTotalMessages;

}

catch (Exception ex)

{

throw ex;

}

}

#endregion

#region Read SMS

public AutoResetEvent receiveNow;

public ShortMessageCollection ReadSMS(SerialPort port, string

p_strCommand)

{

// Set up the phone and read the messages

ShortMessageCollection messages = null;

try

{

#region Execute Command

// Check connection

ExecCommand(port,"AT", 300, "No phone connected");

// Use message format "Text mode"

ExecCommand(port,"AT+CMGF=1", 300, "Failed to set message format.");

// Use character set "PCCP437"

// ExecCommand(port,"AT+CSCS=\"PCCP437\"", 300, "Failed to set

character set.");

// Select SIM storage

ExecCommand(port,"AT+CPMS=\"SM\"", 300, "Failed to select message

storage.");

// Read the messages

string input = ExecCommand(port, p_strCommand, 5000, "Failed to read

the messages.");

#endregion

#region Parse messages

messages = ParseMessages(input);

#endregion

}

catch (Exception ex)

{

throw ex;

}

if (messages != null)

return messages;

else

return null;

}

public ShortMessageCollection ParseMessages(string input)

{

ShortMessageCollection messages = new ShortMessageCollection();

try

{

72

Regex r = new Regex(@"\+CMGL:

(\d+),""(.+)"",""(.+)"",(.*),""(.+)""\r\n(.+)\r\n");

Match m = r.Match(input);

while (m.Success)

{

ShortMessage msg = new ShortMessage();

//msg.Index = int.Parse(m.Groups[1].Value);

msg.Index = m.Groups[1].Value;

msg.Status = m.Groups[2].Value;

msg.Sender = m.Groups[3].Value;

msg.Alphabet = m.Groups[4].Value;

msg.Sent = m.Groups[5].Value;

msg.Message = m.Groups[6].Value;

messages.Add(msg);

m = m.NextMatch();

}

}

catch (Exception ex)

{

throw ex;

}

return messages;

}

#endregion

#region Send SMS

static AutoResetEvent readNow = new AutoResetEvent(false);

public bool sendMsg(SerialPort port, string PhoneNo, string Message)

{

bool isSend = false;

try

{

string recievedData = ExecCommand(port,"AT", 300, "No phone

connected");

recievedData = ExecCommand(port,"AT+CMGF=1", 300, "Failed to set

message format.");

String command = "AT+CMGS=\"" + PhoneNo + "\"";

recievedData = ExecCommand(port,command, 300, "Failed to accept

phoneNo");

command = Message + char.ConvertFromUtf32(26) + "\r";

recievedData = ExecCommand(port,command, 3000, "Failed to send

message"); //3 seconds

if (recievedData.EndsWith("\r\nOK\r\n"))

{

isSend = true;

}

else if (recievedData.Contains("ERROR"))

{

isSend = false;

}

return isSend;

}

catch (Exception ex)

{

73

throw ex;

}

}

static void DataReceived(object sender, SerialDataReceivedEventArgs

e)

{

try

{

if (e.EventType == SerialData.Chars)

readNow.Set();

}

catch (Exception ex)

{

throw ex;

}

}

#endregion

#region Delete SMS

public bool DeleteMsg(SerialPort port , string p_strCommand)

{

bool isDeleted = false;

try

{

#region Execute Command

string recievedData = ExecCommand(port,"AT", 300, "No phone

connected");

recievedData = ExecCommand(port,"AT+CMGF=1", 300, "Failed to set

message format.");

String command = p_strCommand;

recievedData = ExecCommand(port,command, 300, "Failed to delete

message");

#endregion

if (recievedData.EndsWith("\r\nOK\r\n"))

{

isDeleted = true;

}

if (recievedData.Contains("ERROR"))

{

isDeleted = false;

}

return isDeleted;

}

catch (Exception ex)

{

throw ex;

}

}

#endregion

}

}

Class shortMessages.cs

using System;

using System.Collections.Generic;

using System.Text;

74

namespace SMSapplication

{

public class ShortMessage

{

#region Private Variables

private string index;

private string status;

private string sender;

private string alphabet;

private string sent;

private string message;

#endregion

#region Public Properties

public string Index

{

get { return index;}

set { index = value;}

}

public string Status

{

get { return status;}

set { status = value;}

}

public string Sender

{

get { return sender;}

set { sender = value;}

}

public string Alphabet

{

get { return alphabet;}

set { alphabet = value;}

}

public string Sent

{

get { return sent;}

set { sent = value;}

}

public string Message

{

get { return message;}

set { message = value;}

}

#endregion

}

public class ShortMessageCollection : List<ShortMessage>

{

}

}

75

3.6 Case#4: Managing SMS via Visual Basic

Fig 3.23: (AI SMS APP – VB)

3.6.1 Connecting to serial port

 Public Function OpenPort(ByVal strPortName As String, ByVal strBaudRate
As String) As SerialPort
 receiveNow = New AutoResetEvent(False)
 Dim port As New SerialPort()
 port.PortName = strPortName
 port.BaudRate = Convert.ToInt32(strBaudRate)
 'A.I
 port.DataBits = 8
 port.StopBits = StopBits.One
 port.Parity = Parity.None
 port.ReadTimeout = 300
 port.WriteTimeout = 300
 port.Encoding = Encoding.GetEncoding("iso-8859-1")
 AddHandler port.DataReceived, New
SerialDataReceivedEventHandler(AddressOf port_DataReceived)
 port.Open()
 port.DtrEnable = True
 port.RtsEnable = True
 Return port
 End Function

3.6.2 Sending
#Region "Send SMS"

 Shared readNow As New AutoResetEvent(False)

76

 Public Function sendMsg(ByVal port As SerialPort, ByVal

strPortName As String, ByVal strBaudRate As String, ByVal PhoneNo As

String, ByVal Message As String) As Boolean

 Dim isSend As Boolean = False

 Try

 'this.port = OpenPort(strPortName,strBaudRate);

 Dim recievedData As String = ExecCommand(port, "AT",

300, "No phone connected at " & strPortName & ".")

 recievedData = ExecCommand(port, "AT+CMGF=1", 300,

"Failed to set message format.")

 Dim command As [String] = "AT+CMGS=""" & PhoneNo &

""""

 recievedData = ExecCommand(port, command, 300,

"Failed to accept phoneNo")

 command = Message & Char.ConvertFromUtf32(26) & vbCr

 recievedData = ExecCommand(port, command, 3000,

"Failed to send message")

 '3 seconds

 If recievedData.EndsWith(vbCr & vbLf & "OK" & vbCr &

vbLf) Then

 recievedData = "Message sent successfully"

 isSend = True

 ElseIf recievedData.Contains("ERROR") Then

 Dim recievedError As String = recievedData

 recievedError = recievedError.Trim()

 recievedData = "Following error occured while

sending the message" & recievedError

 isSend = False

 End If

 Return isSend

 Catch ex As Exception

 Throw New Exception(ex.Message)

 Finally

 'port.Close();

 'port.DataReceived -= new

SerialDataReceivedEventHandler(port_DataReceived);

 'port = null;

 If port IsNot Nothing Then

 End If

 End Try

 End Function

3.6.3 Reading
 Public Function ReadSMS(port As SerialPort, p_strCommand As String)

As ShortMessageCollection

 ' Set up the phone and read the messages

 Dim messages As ShortMessageCollection = Nothing

 Try

 ExecCommand(port, "AT", 300, "No phone connected")

 ' Use message format "Text mode"

ExecCommand(port, "AT+CMGF=1", 300, "Failed to set message format.")

 ' Select SIM storage

ExecCommand(port, "AT+CPMS=""SM""", 300, "Failed to select message

storage.")

 ' Read the messages

Dim input As String = ExecCommand(port, p_strCommand, 5000, "Failed

to read the messages.")

77

 '#End Region

 '#Region "Parse messages"

 '#End Region

 messages = ParseMessages(input)

 Catch ex As Exception

 Throw ex

 End Try

 If messages IsNot Nothing Then

 Return messages

 Else

 Return Nothing

 End If

 End

Function

Fig 3.24: (AI SMS APP – VB Reading Tab)

 Private Sub btnReadSMS_Click(sender As Object, e As EventArgs)
Handles btnReadSMS.Click

 lvwMessages.Items.Clear()

 Try

 'count SMS

 Dim uCountSMS As Integer

 uCountSMS = objclsSMS.CountSMSmessages(Me.port)

 If uCountSMS > 0 Then

 '#Region "Command"

 Dim strCommand As String = "AT+CMGL=""ALL"""

 If Me.rbReadAll.Checked Then

 strCommand = "AT+CMGL=""ALL"""

 ElseIf Me.rbReadUnRead.Checked Then

 strCommand = "AT+CMGL=""REC UNREAD"""

78

 ElseIf Me.rbReadStoreSent.Checked Then

 strCommand = "AT+CMGL=""STO SENT"""

 ElseIf Me.rbReadStoreUnSent.Checked Then

 strCommand = "AT+CMGL=""STO UNSENT"""

 ElseIf Me.ReadReadSMS.Checked Then

 strCommand = "AT+CMGL=""REC READ"""

 End If

 '#End Region

 3.6.4 Deleting

#Region "Delete SMS"

 Public Function DeleteMsg(port As SerialPort, p_strCommand As

String) As Boolean

 Dim isDeleted As Boolean = False

 Try

 Dim recievedData As String = ExecCommand(port, "AT",

300, "No phone connected")

 recievedData = ExecCommand(port, "AT+CMGF=1", 300,

"Failed to set message format.")

 Dim command As [String] = p_strCommand

 recievedData = ExecCommand(port, command, 300,

"Failed to delete message")

 '#End Region

 If recievedData.EndsWith(vbCr & vbLf & "OK" & vbCr &

vbLf) Then

 isDeleted = True

 End If

 If recievedData.Contains("ERROR") Then

 isDeleted = False

 End If

 Return isDeleted

 Catch ex As Exception

 Throw ex

 End Try

 End Function

#End Region

79

Fig 3.25: (AI SMS APP – VB Deleting Tab)

Private Sub btnDeleteSMS_Click(sender As Object, e As EventArgs)

Handles btnDeleteSMS.Click

 Try

 'Count SMS

 Dim uCountSMS As Integer =

objclsSMS.CountSMSmessages(Me.port)

 If uCountSMS > 0 Then

 Dim dr As DialogResult = MessageBox.Show("Are u sure

u want to delete the SMS?", "Delete confirmation",

MessageBoxButtons.YesNo)

 If dr.ToString() = "Yes" Then

 '#Region "Delete SMS"

 If Me.rbDeleteAllSMS.Checked Then

 'Delete all SMS

 '#Region "Delete all SMS"

 Dim strCommand As String = "AT+CMGD=1,4"

 If objclsSMS.DeleteMsg(Me.port, strCommand)

Then

'MessageBox.Show("Messages has deleted successfuly ");

Me.statusBar1.Text = "Messages has deleted successfuly"

 Else

 'MessageBox.Show("Failed to delete

messages ");

 Me.statusBar1.Text = "Failed to delete

messages"

 '#End Region

81

 End If

 ElseIf Me.rbDeleteReadSMS.Checked Then

'...Delete Read SMS

 '#Region "Delete Read SMS"

 Dim strCommand As String = "AT+CMGD=1,3"

 If objclsSMS.DeleteMsg(Me.port, strCommand)

Then

'MessageBox.Show("Messages has deleted successfuly");

Me.statusBar1.Text = "Messages has deleted successfuly"

 Else

 'MessageBox.Show("Failed to delete

messages ");

 Me.statusBar1.Text = "Failed to delete

messages"

 '#End Region

 End If

 '#End Region

 End If

 End If

 End If

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

3.6.5 SMS APP (complete source VB code)
I. Form1(MAIN)

Imports System.IO.Ports

Imports System.IO

Public Class tabSMSapplication

 Dim port As New SerialPort()

 Dim objclsSMS As New MY_SMS_Application.clsSMS()

 Dim objShortMessageCollection As New

MY_SMS_Application.ShortMessageCollection()

 Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

 End Sub

 Private Sub gboConnectionStatus_Enter(ByVal sender As

System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub WriteStatusBar(ByVal status As String)

 Try

 statusBar1.Text = "Message: " & status

 Catch ex As Exception

 End Try

 End Sub

 Public Sub ErrorLog(ByVal Message As String)

 Dim sw As StreamWriter = Nothing

 Try

 WriteStatusBar(Message)

 Dim sLogFormat As String =

DateTime.Now.ToShortDateString().ToString() & " " &

DateTime.Now.ToLongTimeString().ToString() & " ==> "

81

 'string sPathName = @"E:\";

 Dim sPathName As String = "SMSapplicationErrorLog_"

 Dim sYear As String = DateTime.Now.Year.ToString()

 Dim sMonth As String = DateTime.Now.Month.ToString()

 Dim sDay As String = DateTime.Now.Day.ToString()

 Dim sErrorTime As String = sDay & "-" & sMonth & "-" &

sYear

 sw = New StreamWriter(sPathName & sErrorTime & ".txt",

True)

 sw.WriteLine(sLogFormat & Message)

 sw.Flush()

 'ErrorLog(ex.ToString());

 Catch ex As Exception

 Finally

 If sw IsNot Nothing Then

 sw.Dispose()

 sw.Close()

 End If

 End Try

 End Sub

 Private Sub btnOK_Click_1(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles btnOK.Click

 Try

 'Open communication port

 Me.port = objclsSMS.OpenPort(Me.cboPortName.Text,

Convert.ToInt32(Me.cboBaudRate.Text))

 If Me.port IsNot Nothing Then

 Me.gboPortSettings.Enabled = False

 'MessageBox.Show("Modem is connected at PORT " +

this.cboPortName.Text);

 Me.statusBar1.Text = "Modem is connected at PORT " &

Convert.ToString(Me.cboPortName.Text)

 'Add tab pages

 ' Me.TabControl1.TabPages.Add(tbSendSMS)

 ' Me.TabControl1.TabPages.Add(tbReadSMS)

 ' Me.TabControl1.TabPages.Add(tbDeleteSMS)

 Me.lblConnectionStatus.Text = "Connected at " &

Convert.ToString(Me.cboPortName.Text)

 Me.btnDisconnect.Enabled = True

 Else

 'MessageBox.Show("Invalid port settings");

 Me.statusBar1.Text = "Invalid port settings"

 End If

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

 Private Sub btnSendSMS_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnSendSMS.Click

 ' Send SMS.....

 Try

 If objclsSMS.sendMsg(Me.port,

Me.cboPortName.Text,cboBaudRate.Text,Me.txtSIM.Text,

Me.txtMessage.Text) Then

 'MessageBox.Show("Message has sent successfully");

 Me.statusBar1.Text = "Message has sent successfully"

 Else

 'MessageBox.Show("Failed to send message");

 Me.statusBar1.Text = "Failed to send message"

82

 End If

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

 Private Sub btnReadSMS_Click(sender As Object, e As EventArgs)

Handles btnReadSMS.Click

 lvwMessages.Items.Clear()

 Try

 'count SMS

 Dim uCountSMS As Integer

 uCountSMS = objclsSMS.CountSMSmessages(Me.port)

 If uCountSMS > 0 Then

 '#Region "Command"

 Dim strCommand As String = "AT+CMGL=""ALL"""

 If Me.rbReadAll.Checked Then

 strCommand = "AT+CMGL=""ALL"""

 ElseIf Me.rbReadUnRead.Checked Then

 strCommand = "AT+CMGL=""REC UNREAD"""

 ElseIf Me.rbReadStoreSent.Checked Then

 strCommand = "AT+CMGL=""STO SENT"""

 ElseIf Me.rbReadStoreUnSent.Checked Then

 strCommand = "AT+CMGL=""STO UNSENT"""

 ElseIf Me.ReadReadSMS.Checked Then

 strCommand = "AT+CMGL=""REC READ"""

 End If

 '#End Region

 ' If SMS exist then read SMS

 '#Region "Read SMS"

 ' Read all SMS

 objShortMessageCollection = objclsSMS.ReadSMS(Me.port, strCommand)

 For Each msg As MY_SMS_Application.ShortMessage In

objShortMessageCollection

 Dim item As New ListViewItem(New String() {msg.Index, msg.Sent,

msg.Sender, msg.Message})

 item.Tag = msg

 lvwMessages.Items.Add(item)

 '#End Region

 Next

 Else

 lvwMessages.Clear()

 'MessageBox.Show("There is no message in SIM");

 Me.statusBar1.Text = "There is no message in SIM"

 End If

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

 Private Sub btnCountSMS_Click(sender As Object, e As EventArgs)

Handles btnCountSMS.Click

 Try

 'Count SMS

 Dim uCountSMS As Integer =

objclsSMS.CountSMSmessages(Me.port)

 Me.txtCountSMS.Text = uCountSMS.ToString()

83

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

Private Sub btnDeleteSMS_Click(sender As Object, e As EventArgs)

Handles btnDeleteSMS.Click

 Try

 'Count SMS

 Dim uCountSMS As Integer =

objclsSMS.CountSMSmessages(Me.port)

 If uCountSMS > 0 Then

 Dim dr As DialogResult = MessageBox.Show("Are u sure

u want to delete the SMS?", "Delete confirmation",

MessageBoxButtons.YesNo)

 If dr.ToString() = "Yes" Then

 '#Region "Delete SMS"

 If Me.rbDeleteAllSMS.Checked Then

 'Delete all SMS

 '#Region "Delete all SMS"

 Dim strCommand As String = "AT+CMGD=1,4"

 If objclsSMS.DeleteMsg(Me.port, strCommand)

Then

 'MessageBox.Show("Messages has deleted

successfuly ");

 Me.statusBar1.Text = "Messages has

deleted successfuly"

 Else

 'MessageBox.Show("Failed to delete

messages ");

 Me.statusBar1.Text = "Failed to delete

messages"

 '#End Region

 End If

 ElseIf Me.rbDeleteReadSMS.Checked Then

 'Delete Read SMS

 '#Region "Delete Read SMS"

 Dim strCommand As String = "AT+CMGD=1,3"

 If objclsSMS.DeleteMsg(Me.port, strCommand)

Then

'MessageBox.Show("Messages has deleted successfuly");

Me.statusBar1.Text = "Messages has deleted successfuly"

 Else

 'MessageBox.Show("Failed to delete

messages ");

 Me.statusBar1.Text = "Failed to delete

messages"

 '#End Region

 End If

 '#End Region

 End If

 End If

 End If

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

84

Private Sub btnDisconnect_Click(sender As Object, e As EventArgs)

Handles btnDisconnect.Click

 Try

 Me.gboPortSettings.Enabled = True

 objclsSMS.ClosePort(Me.port)

 Me.lblConnectionStatus.Text = "Not Connected"

 Me.btnDisconnect.Enabled = False

 Catch ex As Exception

 ErrorLog(ex.Message)

 End Try

 End Sub

End Class

I. clsSMS
Imports System.Collections.Generic

Imports System.ComponentModel

Imports System.Data

Imports System.Drawing

Imports System.Text

Imports System.IO.Ports

Imports System.Threading

Imports System.Text.RegularExpressions

Namespace MY_SMS_Application

 Public Class clsSMS

 'public SerialPort port;

 'Open Port

 Public Function OpenPort(ByVal strPortName As String, ByVal

strBaudRate As String) As SerialPort

 receiveNow = New AutoResetEvent(False)

 Dim port As New SerialPort()

 port.PortName = strPortName

 port.BaudRate = Convert.ToInt32(strBaudRate)

 'A.I

 port.DataBits = 8

 port.StopBits = StopBits.One

 port.Parity = Parity.None

 port.ReadTimeout = 300

 port.WriteTimeout = 300

 port.Encoding = Encoding.GetEncoding("iso-8859-1")

 AddHandler port.DataReceived, New

SerialDataReceivedEventHandler(AddressOf port_DataReceived)

 port.Open()

 port.DtrEnable = True

 port.RtsEnable = True

 Return port

 End Function

 'Close Port

 Public Sub ClosePort(ByVal port As SerialPort)

 port.Close()

 RemoveHandler port.DataReceived, New

SerialDataReceivedEventHandler(AddressOf port_DataReceived)

 port = Nothing

 End Sub

 'Execute AT Command

 Public Function ExecCommand(ByVal port As SerialPort, ByVal

command As String, ByVal responseTimeout As Integer, ByVal

errorMessage As String) As String

85

 Try

 ' receiveNow = New AutoResetEvent(True)

 port.DiscardOutBuffer()

 port.DiscardInBuffer()

 receiveNow.Reset()

 port.Write(command + vbCr)

 'Thread.Sleep(3000)

 Dim input As String = ReadResponse(port,

responseTimeout)

 If (input.Length = 0) OrElse ((Not

input.EndsWith(vbCr & vbLf & "> ")) AndAlso (Not input.EndsWith(vbCr

& vbLf & "OK" & vbCr & vbLf))) Then

 Throw New ApplicationException("No success

message was received.")

 End If

 Return input

 Catch ex As Exception

 Throw New ApplicationException(errorMessage, ex)

 End Try

 End Function

 'Receive data from port

 Public Sub port_DataReceived(ByVal sender As Object, ByVal e

As SerialDataReceivedEventArgs)

 If e.EventType = SerialData.Chars Then

 receiveNow.[Set]()

 End If

 End Sub

 Public Function ReadResponse(ByVal port As SerialPort, ByVal

timeout As Integer) As String

 Dim buffer As String = String.Empty

 Do

 If receiveNow.WaitOne(timeout, False) Then

 Dim t As String = port.ReadExisting()

 buffer += t

 Else

 If buffer.Length > 0 Then

 Throw New ApplicationException("Response

received is incomplete.")

 Else

 Throw New ApplicationException("No data

received from phone.")

 End If

 End If

 Loop While Not buffer.EndsWith(vbCr & vbLf & "OK" & vbCr

& vbLf) AndAlso Not buffer.EndsWith(vbCr & vbLf & "> ") AndAlso Not

buffer.EndsWith(vbCr & vbLf & "ERROR" & vbCr & vbLf)

 Return buffer

 End Function

#Region "Count SMS"

 Public Function CountSMSmessages(port As SerialPort) As

Integer

 Dim CountTotalMessages As Integer = 0

 Try

 '#Region "Execute Command"

 Dim recievedData As String = ExecCommand(port, "AT",

300, "No phone connected at ")

86

 recievedData = ExecCommand(port, "AT+CMGF=1", 300,

"Failed to set message format.")

 Dim command As [String] = "AT+CPMS?"

 recievedData = ExecCommand(port, command, 1000,

"Failed to count SMS message")

 Dim uReceivedDataLength As Integer =

recievedData.Length

 '#End Region

 '#Region "If command is executed successfully"

 If (recievedData.Length >= 5) AndAlso

(recievedData.Contains("CPMS")) Then

 '#Region "Parsing SMS"

 Dim strSplit As String() =

recievedData.Split(","c)

 Dim strMessageStorageArea1 As String =

strSplit(0)

 'SM

 Dim strMessageExist1 As String = strSplit(1)

 'Msgs exist in SM

 '#End Region

 '#Region "Count Total Number of SMS In SIM"

 '#End Region

 CountTotalMessages =

Convert.ToInt32(strMessageExist1)

 '#End Region

 '#Region "If command is not executed

successfully"

 ElseIf recievedData.Contains("ERROR") Then

 '#Region "Error in Counting total number of SMS"

 Dim recievedError As String = recievedData

 recievedError = recievedError.Trim()

 '#End Region

 recievedData = "Following error occured while

counting the message" & recievedError

 End If

 '#End Region

 Return CountTotalMessages

 Catch ex As Exception

 Throw ex

 End Try

 End Function

#End Region

#Region "Read SMS"

 Public receiveNow As AutoResetEvent

 Public Function ReadSMS(port As SerialPort, p_strCommand As

String) As ShortMessageCollection

 ' Set up the phone and read the messages

87

 Dim messages As ShortMessageCollection = Nothing

 Try

 '#Region "Execute Command"

 ' Check connection

 ExecCommand(port, "AT", 300, "No phone connected")

 ' Use message format "Text mode"

 ExecCommand(port, "AT+CMGF=1", 300, "Failed to set

message format.")

 ' Use character set "PCCP437"

 ' ExecCommand(port,"AT+CSCS=\"PCCP437\"", 300,

"Failed to set character set.");

 ' Select SIM storage

 ExecCommand(port, "AT+CPMS=""SM""", 300, "Failed to

select message storage.")

 ' Read the messages

 Dim input As String = ExecCommand(port, p_strCommand,

5000, "Failed to read the messages.")

 '#End Region

 '#Region "Parse messages"

 '#End Region

 messages = ParseMessages(input)

 Catch ex As Exception

 Throw ex

 End Try

 If messages IsNot Nothing Then

 Return messages

 Else

 Return Nothing

 End If

 End Function

 Public Function ParseMessages(input As String) As

ShortMessageCollection

 Dim messages As New ShortMessageCollection()

 Try

 Dim r As New Regex("\+CMGL:

(\d+),""(.+)"",""(.+)"",(.*),""(.+)""\r\n(.+)\r\n")

 Dim m As Match = r.Match(input)

 While m.Success

 Dim msg As New ShortMessage()

 'msg.Index = int.Parse(m.Groups[1].Value);

 msg.Index = m.Groups(1).Value

 msg.Status = m.Groups(2).Value

 msg.Sender = m.Groups(3).Value

 msg.Alphabet = m.Groups(4).Value

 msg.Sent = m.Groups(5).Value

 msg.Message = m.Groups(6).Value

 messages.Add(msg)

 m = m.NextMatch()

 End While

 Catch ex As Exception

 Throw ex

 End Try

 Return messages

 End Function

88

#End Region

#Region "Send SMS"

 Shared readNow As New AutoResetEvent(False)

 Public Function sendMsg(ByVal port As SerialPort, ByVal

strPortName As String, ByVal strBaudRate As String, ByVal PhoneNo As

String, ByVal Message As String) As Boolean

 Dim isSend As Boolean = False

 Try

 'this.port = OpenPort(strPortName,strBaudRate);

 Dim recievedData As String = ExecCommand(port, "AT",

300, "No phone connected at " & strPortName & ".")

 recievedData = ExecCommand(port, "AT+CMGF=1", 300,

"Failed to set message format.")

 Dim command As [String] = "AT+CMGS=""" & PhoneNo &

""""

 recievedData = ExecCommand(port, command, 300,

"Failed to accept phoneNo")

 command = Message & Char.ConvertFromUtf32(26) & vbCr

 recievedData = ExecCommand(port, command, 3000,

"Failed to send message")

 '3 seconds

 If recievedData.EndsWith(vbCr & vbLf & "OK" & vbCr &

vbLf) Then

 recievedData = "Message sent successfully"

 isSend = True

 ElseIf recievedData.Contains("ERROR") Then

 Dim recievedError As String = recievedData

 recievedError = recievedError.Trim()

 recievedData = "Following error occured while

sending the message" & recievedError

 isSend = False

 End If

 Return isSend

 Catch ex As Exception

 Throw New Exception(ex.Message)

 Finally

 'port.Close();

 'port.DataReceived -= new

SerialDataReceivedEventHandler(port_DataReceived);

 'port = null;

 If port IsNot Nothing Then

 End If

 End Try

 End Function

 Private Shared Sub DataReceived(ByVal sender As Object, ByVal

e As SerialDataReceivedEventArgs)

 If e.EventType = SerialData.Chars Then

 readNow.[Set]()

 End If

 End Sub

#End Region

#Region "Delete SMS"

 Public Function DeleteMsg(port As SerialPort, p_strCommand As

String) As Boolean

89

 Dim isDeleted As Boolean = False

 Try

 '#Region "Execute Command"

 Dim recievedData As String = ExecCommand(port, "AT",

300, "No phone connected")

 recievedData = ExecCommand(port, "AT+CMGF=1", 300,

"Failed to set message format.")

 Dim command As [String] = p_strCommand

 recievedData = ExecCommand(port, command, 300,

"Failed to delete message")

 '#End Region

 If recievedData.EndsWith(vbCr & vbLf & "OK" & vbCr &

vbLf) Then

 isDeleted = True

 End If

 If recievedData.Contains("ERROR") Then

 isDeleted = False

 End If

 Return isDeleted

 Catch ex As Exception

 Throw ex

 End Try

 End Function

#End Region

 End Class

End Namespace

91

4. Results & Discussions

4.1 Results

We built a Three programs using Three different Programing

Languages, (MATLAB, C#, VB) each program built to manage

GSM Modem for managing SMS (sending, receiving, listing

Messages, deleting) all this via AT commands.

Basic instructions of each program shown in the Table (4.1)

below.

Table 4.1: Basic instruction for managing SMS via AT commands

Command MATLAB
C# VB

Changing
to text
mode

fprintf(s,'%s',
'AT+CMGF=1');

 port.Write('AT+CMGF=1'

+ "\r");

port.Write('AT+CMGF=1' &

vbCr)

fprintf(s,'%s', char(13));

Sending
fprintf(s,'%s',
'AT+CMGS="0912xxxxxx"');

 port.Write(

'AT+CMGS="0912xxxxxx"'

+ "\r");

port.Write(AT+CMGS=" &

PhoneNo & """" & vbCr)

fprintf(s,'%s', char(13));

 port.Write('This is a test

msg'''+ char(26) + "\r");

port.Write('This is a test msg'

&

Char.ConvertFromUtf32(26)

& vbCr)

fprintf(s,'%s', 'This is a test
msg');

fprintf(s,'%s', char(26));

Listing
fprintf(s,'%s',
'AT+CMGF=1');

 port.Write('AT+CMGF=1'

+ "\r");

port.Write('AT+CMGF=1' &

vbCr)

fprintf(s,'%s', char(13));

fprintf(s,'%s',
'at+cmgl="all"');

port.Write('at+cmgl="all"'

+ "\r");

port.Write('AT+CMGL="all"' &

vbCr)

fprintf(s,'%s', char(13));

Reading
fprintf(s,'%s',
'AT+CMGF=1');

 port.Write('AT+CMGF=1'

+ "\r");

port.Write('AT+CMGF=1' &

vbCr)

91

fprintf(s,'%s', char(13));

fprintf(s,'%s', 'at+cmgr=4');

 port.Write('AT+CMGR=4'

+ "\r");

port.Write('AT+CMGR=4' &

vbCr)

fprintf(s,'%s', char(13));

Reading
Results BytesAvail=s.BytesAvailable;

 string t =

port.ReadExisting();

 Dim t As String =

port.ReadExisting()

A=fread(s,BytesAvail,'char');
end

this.textBox1.Text += t; me.textBox1.Text += t;

A;

sprintf('%c', A)

Serial Port s = serial('COM5');

SerialPort port = new

SerialPort(); Dim port As New SerialPort()

s.baudrate=9600;

port.PortName =

p_strPortName;

//COM1

port.PortName =

strPortName

fopen(s);

 port.BaudRate =

p_uBaudRate;

//9600

port.BaudRate =

Convert.ToInt32(strBaudRate)

fclose(s)

port.DataBits =

p_uDataBits;

//8 port.DataBits = 8

4.2 Discussion

The objective of this project is Building a Table of comparison, for

the different applications that used the AT commands.

As a result we successfully built three programs with different

capabilities.

All three programs could be used to send AT commands to any

GSM modem, for managing Short Message Service, however from

testing results MATLAB shown some draw backs, sometimes it

92

doesn’t give the right results every time, on the other hand the higher

languages (C#, VB) programs tend to provide more flexible and user

friendly interface, besides providing independent executable files,

that could be run from the OS directly without need for the creation

environment not like MATLAB.

In the operation level they all using the same AT commands for

doing similar tasks.

This application is applying AT commands to Send SMS complying

with GSM standards, which allows it to be used for many purposes

starting from remote controlling, text chatting, up to broadcasting

news.

It is also could be used as standard to build over it many other AT

commands for Voice, FAX etc...)

93

5. Conclusion & Recommendations

5.1 Conclusion

We built a Three programs using Three different Programing

Languages, (MATLAB, C#, VB) each program built to manage

GSM Modem for managing SMS (sending, receiving, listing

Messages, deleting) all this via AT commands.

This application is applying AT commands to Send SMS complying

with GSM standards, which allows it to be used for many purposes

starting from remote controlling, text chatting, up to broadcasting

news.

5.2 Recommendations

AT commands is one of the very interesting topics, which reflecting

the interconnecting of the GSM world with the computers.

A lot of research and application could be done here, which will lead

to accurate controlling if used for remote controlling for instance,

and could be used to build independent interface for USB modem, so

you don’t have to use the one which you had been given by the

Service provider.

And finally it opens new horizons

Giving the PC ability to manage SMS, i.e. (send, receive, etc...)

Will open a whole new opportunities of creating new services,

commercial, bulk SMS, alarm systems … etc.

