Sudan University of Science and Technology College of Engineering Electronics Engineering Department

Design of:

Warehouse Control System

(Case Study: Petroleum & Chemical Materials)

A Research Submitted In Partial fulfillment for the Requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Amel Alzibeer Mohammed Osman.
- 2. Esra Abdalla Mohammed Mohieldin
- 3. Hala Salah Abdelwahab Dafallah.
- 4. Hiba Elgaili Mohammed Elbashir.

Supervised By: Dr. khalifa Altayeb khalifa

September 2014

الآية

DEDICATION

This project is lovingly dedicated to our respective parents who have been our constant source of inspiration. They have given us the drive and discipline to tackle any task with enthusiasm and determination. Without their love and support this project would not have been made possible.

This dissertation is dedicated to our families for their good-natured forbearance with the process and for their pride in this accomplishment. It was a team effort.

We also dedicated our dissertation to all people give us useful information, and to all our school professors and to our colleagues.

ACKNOWLEDGEMENT

First and foremost, we have **Allah S.W.T** to always thank and cherish for we would have not reached here without his will.

We would like to thank to our supervisor of this project, **Dr.KhalifaAltayebKhalifa** for the valuable guidance and advice. He inspired us greatly to work in this project. His willingness to motivate us contributed tremendously to our project. We also would like to thank his for showing us some example that related to the topic of our project. We are deeply grateful to him for the long discussions that helped us to sort out the technical details of our work. We are also thankful to him for encouraging the use of correct grammar and consistent notation in our writings and for carefully reading and commenting on countless revisions of this manuscript.

A great many people have contributed to its production. We owe our gratitude to all those people who have made this dissertation possible and because of whom our graduate experience has been one that wee will cherish forever.

School of Electronics Engineering , Sudan University of Science and Technology.

And special thanks for our teachers: HashimBattran, AhmedHomaida
, ReemAbdElmoneimand to our fellowstudent Eng. safwatmajdi.

I am obliged to staff members of petroleum training and center and central medical supplies public corporation. for the valuable information provided by them in their respective fields. I am grateful for their cooperation during us visit.

Thanks again to all who helped me.

ABSTRACT

Storing have a great role in the security and stability of the country that we it is needed to store an adequate amounts of food stuff, medical supplies, pharmaceuticals, petroleum products and other necessary materials.

All this materials should be kept under suitable environment because the variation in humidity and temperature may have consequences losses or changes in there specification till it is consumption or be exported during all these processes these materials should kept under proper condition. Therefor cheap method, easy maintenance and easy to use by the concerned members.

The design system consists of three sensors, temperature sensor, humidity sensor and smoke sensor. The temperature in which each point in a warehouse requires to maintain its normal state is controlled by connecting a temperature sensor to the microcontroller. These three sensors have connected to microcontroller which have given the specific range and control the changes that happened in the room storage, and gives the results to the administration of the room weather increase or decrease in the range of the sensors.

THIS PROJECT AIMS to design multi-purpose electronic circuit that controls the appropriate environment for storing which enables to monitor and maintains any changes in the required storing environment.

المستخلص

للتخزين أهميه كبيره في أمن وإستقرار البلاد, حيث نحتاج لتخزين كميات كبيرة من الادوية والعقاقير والأغذية و المواد البترولية او اي مواد ضروريه.

كل هذة المواد يجب ان تحفظ لفترات طويلة في ظروف معينة للمحافظة عليها من التلف او اي تغير في مواصفاتها بسبب التغير في الظروف البيئه الرطوبه ودرجات الحراره إلي حين وصولها للتجار أو تصديرها ويجب علي التاجر أيضا تحسين ظروف التخزين للمحافظه على السلعة بصورة سليمة حتى وصولها للمستهلك.

من هنا يجب توفير طريقه تخزين غير مكلفة نسيبا ومتوفرة وسهلة الصيانة.

يحتوي النظام علي ثلاثه حساسات (حساس رطوبه, حساس درجه الحراره, حساس للغاز) للمحافظه علي درجه الحراره في كل حيز من المخزن عند درجه الحراره المطلوبه يتم التحكم بها باستخدام المايكروكنترولر مع حساس الحراره . هذه الثلاته حساسات موصله مع المايكرو كنترولر مع ضبط المدى المعين . واعطاء النتيجه للاداه وحدات المعالجه في المخزن (فتح او اغلاق) .

الهدف من المشروع تبتصميم دائرة الكترونية للتحكم في بيئة المخزن متعدد الاستخدامات حيث يتم التحكم في الظروف البيئه المناسبه للتخزين ولها المقدره على مراقبة ومعالجة التغير في العوامل البيئة.

LIST OF CONTENTS

Chapter	Tittle	Page
-	DECLARATION	II
	DEDICATION	III
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	ABSTRACT IN ARABIC	VI
	LIST OF CONTENT	VII
	LIST OF TABLES	IX
	LIST OF FIGURES	X
	ABBREVIATION	XII
	LIST OF APPENDICES	
1.	INTRODUCTION	
	1.1 Preface	2
	1.2 Problem statement	2
	1.3 Propose solution	3
	1.4 Objective	
	1.5 Methodology	3
	1.6 Research outlines	4
2.	LITRATURE REVIEW	
	2.1 Background	7
	2.1.1 Temperature sensor	7
	2.1.1.1 Thermocouples	7
	2.1.1.2 RTD (Resistance	
	Temperature Detector)	9
	2.1.1.3 Silicon band gap temperature	
	sensor	11
	2.1.1.4 Thermistors	12
	2.1.2 Humidity sensor	13
	2.1.2.1 The Principle Operation of	14
	Analog Humidity Sensors	14
	2.1.2.2 The Principle Operation of	
	Digital Humidity Sensors	14
	2.1.2.3 Capacitive humidity sensors	14
	2.1.2.4 Resistive humidity Sensor	16
	2.1.2.5 Psychrometer	17

	2.1.2.6 Thermal conductivity sensor	19
	2.1.3 Gas detector	20
	2.1.3.1 The Principle Work	21
	2.1.3.2 Types of Gas Detector	21
	2.1.3.3 Gas Detector Technologies	22
	2.1.3.4 CO2Gas Sensor Work	22
	2.1.3.5 Application of Gas Sensor	24
	2.2 Literature Review	24
	2.2.1 Petroleum Training Center	24
	2.2.1.1 Specification of the	
	Warehouse	25
	2.2.2 Central Medical Supplies	
	Public Corporation	27
	2.2.3 Recommendation on the control	
	and monitoring of storage and	
	transportation temperatures of	29
	medicinal product	
3.	HARDWARE AND COMPONENT	
	3.1Research methodology	31
	3.2 Block diagram	31
	3.2 .1 Microcontroller	32
	3.2 .2 Temperature sensor	32
	3.2 .3 Humidity sensor	32
	3.2 .4 Sprayers	32
	3.2 .5 Cooling system	33
	3.2 .6 Heating system	33
	3.2 .7Alarm system	33
	3.3 System components	33
	3.3.1 The microcontroller system	33
	3.3.2 The buzzer (audio alarm)	34
	3.3.3 <u>Humidity</u> sensor (HS1101)	35
	3.3.4 Temperature Sensor (LM35)	35
	3.4 System Scenario	37
	3.5 Flow chart	38
4.	SIMULATION AND RESULT	
	4.1 Circuit Simulation	41
	4.2 Software implementation	41
	4.3 Hardware implementation	45
	4.3.1 Temperature Sensor (LM35)	45
	4.3.2 <u>Humidity</u> sensor (HS1101)	46
	4.3.3 IC 555 timer	46

	4.3.4 Microcontroller	47
	4.3.5 Regulator	48
	4.3.6 Power supply	48
	4.3.7 proteus	49
	4.3.8 BASCOM	49
	4.4 Result	49
5.	CONCLUSION AND	
	RECOMMENDATION	
	5.1Conclusion	53
	5.2 Recommendation	53
	REFERENCE	
	APPENDIXES	

LIST OF TABLES

No of table		Page
Table:	the implementation of system design	44
Table:	constructions for RTD elements	71
Table:	relation of changing capacitance to Output	71
Table:	Component price	72

LIST OF FIGURES

Figure	Page
Figure 2-1: Schematic drawing of a thermocouple	8
Figure 2-2: silicon temperature sensor	11
Figure 2-3: capcitive type	16
Figure 2-4: psychrometer	19
Figure 2-5:thermal conductivity sensor	20
Figure 2-6: gas detector	21
Figure 2-7: CO2 gas sensor	22
Figure 2-8: petroleum warehouse	24
Figure 2-9: warehouse divide into shelves	25
Figure 2-10: hygro-thermometer sensor	25
Figure2-11:monitor screen	28
Figure 2-12: inside CMSPC warehouse	28
Figure 3-1:warehouse monitor and control	31
Figure 3-2: buzzer	35
Figure 3-3:HS10101 humidity sensor	35
Figure 3-4: lm 35	36
Figure 4-1: Circuit Simulation	41
Figure 4-2: system lock happen	42
Figure 4-3: safe mode	42
Figure 4-4: Heater system open	43
Figure 4-5: fan is open	43
Figure 4-6: dangorous mode	44

Figure4-7: hardware circuit	45
Figure 4-8: LM 35	46
Figure4-9: HS1101	46
Figure4-10: 555timer IC	47
Figure4-11:Atmega16	47
Figure4-12:Regulater	48
Figure4-13:power supply circuit	48
Figure4-14:RH set	50
Figure4-15: Door open	50
Figure4-16: One case of warehouse	51
Figure4-17: Cooling system	51

ABBREVIATION

AC Analog Current

ADC Analog to Digital Convertor

CO2 Carbon dioxide °C Celsius (Centigrade)

C Colom

CMSPC Central Medical Supplies Public

Corporation.

DC Direct Current

EMI Electromagnetic Interference

E Enable

F

EPROM Erasable Programmable Read

Only Memory Fahrenheit

Ft Foot
IR Infrared
I/O Input/ Output

ICDInterface Control DocumentJTAGJoint Test Action Group

 $\begin{array}{ccc} K & & Kelvin \\ KB & & Kilo \ Byte \\ KHz & & Kilo \ Hertez \\ k\Omega & & Kilo \ Ohm \end{array}$

LED Light Emitting Diode LCD Liquid Crystal Display

 $\begin{array}{ccc} \text{MHz} & & \text{Mega Hertez} \\ \text{M}\Omega & & \text{Mega Ohm} \\ \text{M} & & \text{Meter} \end{array}$

 $\begin{array}{ccc} \text{Ma} & & \text{Micro Ampere} \\ \mu\nu & & \text{Micro Volt} \\ \text{MC} & & \text{Microcontroller} \end{array}$

NTC Negative Thermal Coefficient
PTC Positive Thermal Coefficient
PWM Pulse Width Modulation
RAM Random Access Memory

R/W Read/Write
RS Register select
RH Relative Humidity

RISC Reduced Instruction Set

Computing

RTD Resistance Temperature Detector

Sec Second

SCADA Supervisory Control And Data

Acquisition

SSPI Security Support Provider

Interface

USART Universal Synchronous

Asynchronous Receiver

Transmitter

VCC Voltage Collector to Collector

V Volt

WH Warehouse

Chapter One Introduction

Chapter One

1. may ounction

1.1 Preface:

Warehouses are facilities that provide a proper environment for the purpose of storing goods and materials that require protection from the change of environment parameter. Warehouses must be designed to accommodate the loads of the materials to be stored, the associated handling equipment, the receiving and shipping operations and associated trucking, and the needs of the operating personnel. The design of the warehouse space should be planned to best accommodate business service requirements and the products to be stored.

Special-designed warehouses meeting strict requirements can also provide liquid storage, flammable and combustible storage, radioactive material storage, hazardous chemical storage, and ammunition storage [1].

1.2 Problem Statement:

When the materials are brought to the warehouse, every materials needs specific conditions to maintain their quality.

Some of the materials will become spoiled if they are not kept under necessary conditions.

- Shutting down of electricity may cause an increase the temperature and humidity of the room which need to control.
- The fire may cause to damage the materials which may be need.

To provide optimum conditions in storage is main issue to be addressed.

1.3 Proposed Solution:

To provide the warehouse withcircuit for monitoring any changes in the standard environmentalrequirements that may change in the characteristic of the store materials.

The alarm should show the personnel if any changes took place humidity, temperature, etc.

1.4 Objectives:

The main objectives of this project are to design the system and develop in it by using these steps:

- 1. Designing of warehouse control system.
- 2. Simulate the proposed system.
- 3. Verification and evaluation of the system. (testing).

1.5 Methodology:

This Part discusses the method that followed, to complete the objective of this system:

Phase one:

- Research and collect information aboutsensor and approach of manipulator .Determined the problem statement, objective, the proposed solution and methodology.
- Visit and study petroleum training center warehouseand Central Medical Supplies Public.

❖ Phase two:

- Hunting the information for building back ground knowledge by compared with standard system and local system.
- Study about microcontroller.
- Research about the component and the systems used to design the warehouse.

Phase three:

- System block diagram of warehouse control circuit.
- ➤ Determine the block diagram circuit for warehouse monitor.
- ➤ Working mechanism of control system.

❖ Phase four:

- Select the components of the warehouse control circuit.
- Simulate the warehouse control circuit.
- Evaluate performance the warehouse control circuit simulation.

Phase five:

- Establish a prototype warehouse design.
- Optimize the design.
- Document the work with a design proposal.

❖ Phase six:

- Develop the software driver for the control circuit.
- Integrate the software with the hardware.
- Testing the final warehouse control circuit.
- Final documentation of project.

1.6Research Outlines:

- ➤ Chapter one includes preface, problem statement, proposed solution, objective and methodology.
- Chapter two include literature review about petroleum training center and central medical supplies public corporation .also include some information about temperature sensor, humidity sensor and gas sensor(their types and principles).
- ➤ Chapter three consists ofblock diagram, system component system scenario and flow chart.
- ➤ Chapterfour includes circuit simulation, software implementation, hardware implementation and result.
- > Chapter five includes conclusion and recommendation.