CHAPTER 3
System design

3.1The Line Follower Robot

This Line Follower Robot basically use a Cadmium Sulphide (CdS) photocell
sensor or known as Light Dependent Resistor (LDR) and the high intensity blue
Light Emitting Diode (LED) to illuminate the area under the photocell sensor to
sense the black track line and the DC motor speed control technique to navigate

the black line track as shown the: figure 3.1.

Black Track Line

© - Light Sensitive Sensor
Navigation:

Proportionally Control both Left and Right Motor
Speed to Navigate Black Line based on the light
sensitive sensor input

Figure 3.1 Line-follower Robot

3.2.1 Basic Design and Requirements

The robot is built with ATmega8, L293D, IR sensors, and platform consisting
of a toy car chassis (or robotic kits). The robot is designed using two DC motors
controlling wheels (4 wheel drive car). It has a combination of IR LED’s and
Photo Transistor for detect black tracking tape .It captures the line position with
the help of these optical sensors called opto-couplers mounted at front end of the
robot. (Each opto-coupler consists of an IR LED and an IR Sensor) when the
sensors detect black surface, output of sensors enter as inputting to ATmega32 in

ADC (analogue to digital conversion) , ADC is low logic and for white surface the

33

output is high. It reports to the microcontroller for accurate control and steering of
motors. Microcontroller ATmega8 and Motor driver L293D were used to drive the

motors. show figure 3.2

Left Motor

@

=
£ e AN
= 1 1 :‘.V 3 "
< 3 ;‘LM‘“‘ o-controller lC::i Motor Driver IC
5 b ¢ ATmega8 <01, 1.293D
> A R Td
£ | Analog = 2 2od
2 | signals ey s B et A
Right Motor
Input System Processing System Output System

figure 3.2 Stages of the system of line follower robot
3.2.2 The program for Line following robot

The Line following robot Program needs help from three libraries :
LED lib (to turn on/off five indicator LEDs)

Motor lib (to control the speed and direction of rotation of motor)
ADC lib (to configure and use the analog to digital converter of ATmega8).

34

3.2.3 Introduction to ATmelStdio6

Atmel Studio 6 or AS6 in short, is the latest IDE (Integrated Development
Environment) by Atmel for their 8 bit and 32bit MCUs lines. AVR Studio 6
comes integrated with latest version of avr-gcc compiler. So the completed
development environment can be installed with a single easy to use installer.

The IDE Consist of a high end editor with flawless auto-complete. The editor is
powered by proven Microsoft Visual Studio. The editor makes it easy to type and
edit C source file with its auto complete feature, the user don’t have to “refer” to
the reference manual often as the editor itself shows the parameter requirements of
a function, return type and the help.
The line following robot(LFR) Code Walk through:-

1.Design PD controller using MATLAB commands:

Syntax:

Sys=tf(num,den);

[kp,ki,kd]=tf(G(s));

Kp =200;

Ki=0.2;

Kd =120;

Numc =[Kd Kp Ki];

Denc =[10];

[numCL, denCL]=cloop(conv(num,numc),conv(den,denc));

step(numCL, denCL)

s00 1000

Figure 3.3 response PD controller using MATLAB

1. The main program begins by Initializing three subsystems namely Motor,
LED and ADC (for sensor input).

35

http://extremeelectronics.co.in/lfrm8/Help/AS6.htm

2. Then program enters into a infinite loop (while(1) { //Main LFR Loop }end
the loop off power), this infinite loop keeps the robot follow line as long as it has
power.

In the loop first thing we do is to read the sensor using the ReadSensors() we get a
value between 1 to 5 as follows.

the line is towards right of center then value tends to 5

When the line is towards left of center then value tends to 1

When line is in the exact center the value is 3

Returns OxFF if no line is detected.

Return value may be fractional also, like it is 2.5 when line is beneath sensor 2 and
sensor 3

In case a line is NOT found we below any sensor we used value we got last time.
This is done by storing the current line position in a variable sprev just before the
end of main loop.

Now a PID algorithm is used to find out the control variable from the current
position and required position.

Current Position it is the position of line as read by the sensors.

Required Position is 3 (to keep the line on the middle sensor whose number is 3)

36

Move motor A (left)&motor B(right)

Infinite
loop

&

/ Read sensors

v

Yes
Normal move s=3
\l’ No
Yes
hift to right
shift to rig <=1or2

and eright

Yes

shift to right and
eright

No
Yes

Restart and s=
Previous state

i

Wait

Figure 3.4Line Following Programming Algorithm

37

Then we make the control variable come within a range of -510 to +510

When the control variable is more than 0 that means line is

need to take right turn to correct the error and bring the robot back to track. To do

a right turn we need to make the right motor go slow by the amount of control (if

control is less than 255).

if control is more than 255 then we need to make the right motor go in opposite

direction by the amount of control.

This will create a much faster right turning.

Similarly if control variable is less than O that means line is towards the right, so

we need to take left turn to correct the error and bring the robot back to track. The

whole code looks like this.

Initislizing thres subs nystem {mokor-
start —] .
= LED amd ADC)

Infinite

locp(]

Frmmd sarsors|resd sensoe| |

S=rendz=nsors ||

PID=coevbrol|s, 3.0)

PID com o range -310 to +310

towards the left, so we

direction to

wes ~
Slow speed left 5
Shovw speed mght maotar spe=d ket
meotor menbne
(Lt -

T
M A

Figure3.5 Flow chart of the code

38

*
Right miotor full
spesd=2%%
3
[L= ft smiovbor fual ﬂI
spead=235 -J | |

If Right black line sensor (sensor5=1) than LED5 (ON) .
If Right black line sensor (sensor4=1) than LED4 (ON) .
If Middle black line sensor (sensor3=1) than LED3 (ON).
If Left black line sensor (sensor2=1) than LED2 (ON).

If Left black line sensor (sensorl=1) than LED1 (ON).

SENS0R._THERE3>80

Faad analag InprEs

eright=iesdi x| SENSORE)

SEnsorsi=

I S Hao
- e
IERSOR_THRE3 >80 e
''_._.—_
—
L s
Faad amnalog Inpaba
rlght=RaadaDT (SENS0RT |
Mo
T ——
s ——
SEN3CR TERES:H L ———y
i
‘‘—\—__' i
:I: s
Faacd analog
HlATle=headhDE | SEHNSORS
Mlddle Black
limg S@Endcr
| LEDF £oid .

Faad analasg Inpars
lafrt=feadih[=® [SENSORD)

—————
———
——

Fead analosg Inpabs

elaflt=ReadiDs [SERSOL] |

Figure 3.6 LED &SENSORS programming

39

3.2.3 Voltage Regulator 78xx

Voltage regulators convert fixed DC output voltage from variable DC. The
most commonly used ones are 7805 and 7812. 7805 gives fixed 5V DC voltage if
input voltage is between 7.5V to 20V. They help to maintain a steady voltage
level despite varying current demands and input voltage variations. If input
voltage is <7.5 V then regulation whon't i.e. if input is 6V then output may be 5V
or 4.8V, but there are some parameters for the voltage regulators like maximum
output current capability, line regulation etc.. , that won't be proper. To identify
the leads of the 7805, you have to keep the lead downward and the writing to your
side, (see the figure 3.7). You can see the heat sink above the voltage regulator.(1-

input,2-gnd,3-output) 2.

Vin 3 +H5VY out

Ll 4 100nF 10uF

o)

Figure 3.7circuit of regulator and sample of integrated circuit

Figure above shows how to use 7805 voltage regulator. Here you can see that
coupling capacitors are used for good regulation. But there is no need for it in
normal case. But if 7805 is used in analog circuit we should use capacitor,
otherwise the noise in the output voltage will be high. The mainly available 78xx
IC's are 7805, 7809,7812,7815 2,
3.2.4 Processing System

Processing system acts as the Brain of robot, which generates desired output
for corresponding inputs. For that we use microcontrollers. In present days, there
are several companies that manufacture microcontrollers, see the figure 3.8. For
example ATMEL, Microchip, Intel, Motorola etc. We will be using ATmega8L

microcontroller in our robot. It is an ATMEL product. It is also called AVR.

40

It's used ATmega8L because Line follower robot requires simple
microcontroller as it uses simple algorithms. We can use any microcontroller for
that.lt is an ISP (In System Programmable) device. It means programming
(Burning) of ATmega8 IC can be done without removing it from the system.
Note: Programming (Burning) of a microcontroller means transferring the code
from computer to microcontroller. More details show the appendix B.

It has on chip PWM (Pulse Width Modulation) circuit at three pins (Pin 15, 16
and 17). We have explained PWM in another tutorial.

It consumes low power than other microcontrollers.

It has an inbuilt RC oscillator. (Oscillator is a clock generator circuit).

3.3.1Hardware Details

./

(RESET) PCs [] 1 28 [PC5 (ADC5/SCL)|
(RXD)PDoO (] 2 27 [PC4 (ADC4/SDA)
(TXD)PD1] 3 26 | 1 PC3 (ADC3)
(INTO) PD2] 4 25 [PC2 (ADC2)
(INT1) PD3 [} 5 24 [1 PC1 (ADC1)

(XCK/TO) PD4 (|6 23 [J PCO (ADCO)

vcCc (7 22 | JGND
GND (] 8 21 [J AREF
(XTAL1/TOSC1) PB6]9 20 | JAVCC

(XTAL2/TOSC2) PB7 [

—
o

19 [J PB5 (SCK)

(T1) PD5] 11 18 [PB4 (MISO)
(AINO) PD6 [] 12 17 [J PB3 (MOSI/OC2)/
(AIN1) PD7 [] 13 16 [PB2 (SS/0C1B)
(ICP1) PBO] 14 15 [PB1 (OC1A)

Figure 3.8 integrated circuit of ATmega8L

3.3.2 Basic Hardware Connections of ATmega8

Pin 1 (Reset): The use of reset pin to reset the ATmega8 microcontroller. This
can be done by connecting this pin to ground. But in normal mode of execution it
should have at least 2.7V.

Pin 7 and 20 (Vcc): Pin 7 and 20 should be connected to Power supply. (2.7 to
5.5 volt for ATmega8L) .

Pin 8 and 22 (Ground): Pin 8 and 22 should be connected to Ground.

41

Input and Output Ports

In ATmega8 we have three 1/O (input/output) ports viz. Port B, Port C, Port D .

One can configure any pin of all these ports as input or output pin by software.

We are using Port B pins (PBO to PB3) as output pins because at pinPB1 and
PB2 we have on-chip PWM output that can control the speed of motors. Pin
PORT Connection PWM 14 PBO Negative of right NO 15 PB1 Positive of right
YES 16 PB2 Positive of Left YES 17 PB3 Negative of Left NO ! more details
sees the appendix C.

Table 3.1 function of pins at ATmega8L microcontroller

Pin Port Connection

14 PBO Negative of right
15 PB1 Positive of right
16 PB2 Positive of left
17 PB3 Negative of left
18 PB4 medium

Thus we can use Port C or Port D or remaining Pins of Port B as input. But

forthe sake of simple hardware connection we choose Port D pins as input pins

3.3.3Burner (or Programmer)

Burner (or programmer) is the circuit used to transfer the code from computer
to microcontroller IC. For programming AVR there are different types of burners
available Eg stk200, stk500, jtag2 etc. We are using stk200 programmer.

3331
I. Requirements

Parallel Port DB 25 connector (connects to the computer)
5 Pin RMC connector goes to AVR PCB.

5 wired Bus They are shown in following figure 3.8.

42

Connector

Parallel Port (DB 25)

5 wired Bus

5 pin RMC connector

Figure 3. 9connector cable

ii. Connections

Connections are given by the following figure 3.10.

iy
1e

2 o
3 o
4 o
5 o
5 o

5 wired Bus

T

@
@

7o
8o
9

[

10

v

11 o

Y

Parallel Port (DB 25)

Connector

5<”°

S pin RMC connector

Pin no of
AVR
SCK i9
MOSI A7
RESET 1
MISO 18
8

Figure 3.10 idea of connector operation

Table 3.2 Explanations of Pins of ATmega8

SCK SPI bus master clock input
MOSE Master output \ slave input
RESET Reset pin

MISO Master input \ slave output
GND Ground

43

3.3.4Program Details

I. Programming and Simulation

Programs for the AVR series of microcontrollers can be written in assembly
(AVR ASM), C and BASIC. AVR Studio, WInAVR etc. are some free
development software's for programming the AVR Microcontrollers. We are using
winAVR for programming and AVR Studio for simulating (Simulation means
debugging the code on software, one can virtually give the input and check the
output for that code). In winAVR programmers Notepad we write our C code,
after compilation it generates “.hex’ file that is a hardware level code.

I.Motor Output System
For moving a robot we have to dc motor attached to wheels gears.
ii. Dc Motor

Dc motor is most easy to control. One dc motor requires only two signals for
its operation. If we want to change its direction just reverse the polarity of power
supply a cross it. We can vary speed by varying the voltage across motor. By
using two motors we can move our robot in any direction. This steering

mechanism of robot is called as differential drive. show figure 3.11 and 3.12

| Right Motor Movement

Left Wheel |

_—

Right Wheel |}

-——‘ Left Motor Moyement

Direction of
Movement of Robot

Free wheerl at front khol Body |

Figure 3.11 Description of various parts

44

Figure 3.12 Different Types of Movement of Robot

iii. Motor Driver L293D(H-bridge)

From microcontroller we cannot connect a
microcontroller cannot give sufficient current to drive the DC motors.
driver is a current enhancing device; it can also be act as Switching Device. Thus

motor directly because
Motor

we insert motor driver in between motor and microcontroller.

Motor driver take the input signals from microcontroller and generate

corresponding output for motor.

+ +5V
A U/
ENABLE 1 1 164 Vss
INPUT 1 2 IS meut 4
m B
OUTPUT 1 3 6‘ 2 4 OUTPUT 4
Negative of right motor - § Negative of left inotor
—
& GND
r[GND % e 13 |
Q
* GND 59 >4 | A ov

ov

OuUTPUT 2 6 n OUTPUT 3

Positive of rigitt inotor Positive of left motor
INPUT 2 7 10 INPUT 3
vs 8 9 |N_ENABLE 2

+5V

Supply Voltage /
Voltage at which motor will deive around &V
1o de motor andd at max. 12V to Gear motor,

Figure 3.13 Pin details of L293
This is a motor driver IC that can drive two motor simultaneously. Let's see how

we use this IC (see in the figure 3.13)

45

3.3.6.1 operation H- bridge

The H-bridge arrangement is generally used to reverse the polarity of the motor,
but can also be used to 'brake' the motor, where the motor comes to a sudden stop,
as the motor's terminals are shorted, or to let the motor 'free run' to a stop, as the
motor is effectively disconnected from the circuit. The following table summarises

operation, with S1-S4 corresponding to the diagram above.

off

51 53

52/ 54(

Figure 3.14 Structure of an H bridge (highlighted in red)

| A
AT P /T | P
Vi) I M
L S _r'J | ".__,.f
.'Ir i'.' . ."I.
| |

Figure 3.15 The two basic states of an H bridge

Table 3.3 Output of tow motors

S |S |S |S |Result

1 (2 |3 |4

1 {0 (0 |1 | Motor moves
right

O |1 |1 [0 | Motor moves
left

0O |0 |0 |0 | Motorfreeruns

0 |1 [0 |1 | Motorbrakes

1 |0 (1 |0 | Motorbrakes

1 |1 |0 |0 | Shoot-through

0 [0 |1 |1 | Shoot-through

1 |1 |1 |1 | Shoot-through

46

DC MOTOR

E e B o T o DC MOTOR

=

Figure 3. 16 Block diagram H bridge

3.4.1 Sensing of the Black Line

The sensors used for the project are Reflective Object Sensors, OPB710F that
are already ready in the Electronic Lab. The single sensor consists of an infrared
emitting diode and a NPN Darlington phototransistor. When a light emitted from
the diode is reflected off an object and back into the phototransistor, output current
iIs produced, depending on the amount of infrared light, which triggers the base
current of the phototransistor.
In my case, the amount of light reflected off a black line is much less than that of
a white background, so we can detect the black line somehow by measuring the

current. (This current is converted to voltage.)

Photo Photo

Diode L0 Diode M LED

> s

Figure 3.17 Sensor in an opto-coupler

47

LEFT +5Y

220E 56k L339

Moc Ny
7811 —— “u

TOV

of other comparators

Figure 3.18 Sensor circuit redrawn with the comparator

3.4.2 Control of DC Motor

The easy method to navigate the black track line is to turn ON and OFF the
left or the right DC motor according to the sensor reading (black turn OFF and
white turn ON), but using this method will make the LFR to move in zigzag way.
By proportionally control both left and right DC motor speed according to the
light intensity level received by the photocell sensor (reflected back by the black
track line) we could make the LFR easily navigate this track. The common
technique to control the motor speed efficiently is to use a pulse signal known as
the pulse width modulation or PWM for short.

PWM basically is an ON and OFF pulse signal with a constant period or
frequency. The proportion of pulse ON time to the pulse period is called a “duty
cycle” and it expressed in percentage. For example if the proportion of pulse ON
time is 50% to the total pulse period than we say that the PWM duty cycle is 50%.
The PWM duty cycle percentage is corresponding to the average power produced
by the pulse signal; the lower percentage produces less power than the higher
percentage.

Therefore by changing the PWM duty cycles we could change the average voltage
across the DC motor terminals, this mean we could vary the DC motor speed just
by changing the PWM duty cycle. Therefore to make the LFR smoothly navigate
the black track line, we have to adjust the PWM duty cycle according to the
photocell sensor reading. The brighter light intensity level received by sensor
(sensor is on the white surface) will result in higher PWM duty cycle percentage
and the darker light intensity level (sensor is on the black line) received by

photocell sensor will result in lower PWM duty cycle percentage.

48

& Pulse Pariod L

Pulse Widith

I L
5 Walt : F e L o
—‘ |_| H H 1.25 Vol
t t

Duty Cycle = Pulse Width / Pulse Period
Duty Cycle: 25 % i

5 Vaolt

2.5 Volt

Duty Cyebe: 50 %

5 Waolt

2 Waolt

Duwsty Cycle: 75 %

PWM Signal Input Average Voltage on the Motor

Figure 3.19 PWM timing diagram
3.5Principles How a Robot Can Follow a Guideline

A robot seeks a guideline by riding on a spiral trajectory until it crosses. Even

then the robot starts to follow a given guideline. There are three fundamental

situations that could happen:

3.5.1 Being on a Line
The simplest case is when both sensors are above a guideline and a robot

follows it going straight on, show figure 3.20.

Lt ?,

Figure 3.20 Being on line

3.5.2 Loosing a Line
Approaching a curve, a right sensor looses contact with a line. The robot

unclothes its left engine; thereby it begins to turn left to return to the line. Show

figure 3.21

49

Figure 3.21 Losing a line

3.5.3 Outside of a Line

If a curve is too sharp (it means a robot’s turning radius is greater than a
curve radius of the line), a robot can lose the guideline and it is outside of it. It
changes the direction of the engine, which causes the robot to turn towards to the
line. The sensors that are placed off axis get the same situation could also occur at

the end of the line. In such case the robot reverses at 180 degrees and turns back,
Show figure 3.22

Figure 3.22 Outside

50

3.6 Line follower board using ATmaga8 circuit

Line Follower Board using ATmega8

0SC1t

X1

feh

Q2 3
I o I 1

OSCILLATOR

CONNDIL10

Sensors

LED!

12v

R *Dﬂ

!\N D10I 0 414
" W ot I
3 :} N L Q RESET
* SHTCH DODE R .
=
100nF —
EESOCW i T " T e STCHTACIE
2 a1
* POWER SUPPLY -l— Reset Button
1V INGist2 A RESET
L1 W\ D5 06 07 08 09
10uH A \N LED \N LED \N LED \N LED \N LED
IR2 RY RS R6 R7
330R 3R 30R 3R 3R
S O O A
O.J = =f) 2l
-= SENSOR STATUS LED

ATMEGAS

2
MI=

- [g 0
U
9 1 <f() <|Z o)
X

=
9 0
¥ g

AVRI

OSI

0
z
0

MISO

SP

s

CONN-SIL2

Figure 3.23 Line Following Robot Simulation Circuit

51

L2630

SERESHLIAY
CON1

SERESH)-2WAY

MOTORDRIVER ~ RIGHT M

