
33

CHAPTER 3

System design

 3.1The Line Follower Robot

 This Line Follower Robot basically use a Cadmium Sulphide (CdS) photocell

sensor or known as Light Dependent Resistor (LDR) and the high intensity blue

Light Emitting Diode (LED) to illuminate the area under the photocell sensor to

sense the black track line and the DC motor speed control technique to navigate

the black line track as shown the: figure 3.1.

Figure 3.1 Line-follower Robot

3.2.1 Basic Design and Requirements

 The robot is built with ATmega8, L293D, IR sensors, and platform consisting

of a toy car chassis (or robotic kits). The robot is designed using two DC motors

controlling wheels (4 wheel drive car). It has a combination of IR LED’s and

Photo Transistor for detect black tracking tape .It captures the line position with

the help of these optical sensors called opto-couplers mounted at front end of the

robot. (Each opto-coupler consists of an IR LED and an IR Sensor) when the

sensors detect black surface, output of sensors enter as inputting to ATmega32 in

ADC (analogue to digital conversion) , ADC is low logic and for white surface the

34

output is high. It reports to the microcontroller for accurate control and steering of

motors. Microcontroller ATmega8 and Motor driver L293D were used to drive the

motors. show figure 3.2

figure 3.2 Stages of the system of line follower robot

3.2.2 The program for Line following robot

 The Line following robot Program needs help from three libraries :

 LED lib (to turn on/off five indicator LEDs)

Motor lib (to control the speed and direction of rotation of motor)

ADC lib (to configure and use the analog to digital converter of ATmega8).

35

 3.2.3 Introduction to ATmelStdio6

 Atmel Studio 6 or AS6 in short, is the latest IDE (Integrated Development

Environment) by Atmel for their 8 bit and 32bit MCUs lines. AVR Studio 6

comes integrated with latest version of avr-gcc compiler. So the completed

development environment can be installed with a single easy to use installer.

The IDE Consist of a high end editor with flawless auto-complete. The editor is

powered by proven Microsoft Visual Studio. The editor makes it easy to type and

edit C source file with its auto complete feature, the user don’t have to “refer” to

the reference manual often as the editor itself shows the parameter requirements of

a function, return type and the help.

The line following robot(LFR) Code Walk through:-

1.Design PD controller using MATLAB commands:

Syntax:

Sys=tf(num,den);

[kp,ki,kd]=tf(G(s));

Kp =200;

Ki =0.2;

Kd =120;

Numc =[Kd Kp Ki];

Denc = [1 0];

[numCL, denCL]=cloop(conv(num,numc),conv(den,denc));

step(numCL, denCL)

Figure 3.3 response PD controller using MATLAB

1. The main program begins by Initializing three subsystems namely Motor,

LED and ADC (for sensor input).

http://extremeelectronics.co.in/lfrm8/Help/AS6.htm

36

2. Then program enters into a infinite loop (while(1) { //Main LFR Loop }end

the loop off power), this infinite loop keeps the robot follow line as long as it has

power.

In the loop first thing we do is to read the sensor using the ReadSensors() we get a

value between 1 to 5 as follows.

 the line is towards right of center then value tends to 5

 When the line is towards left of center then value tends to 1

 When line is in the exact center the value is 3

 Returns 0xFF if no line is detected.

 Return value may be fractional also, like it is 2.5 when line is beneath sensor 2 and

sensor 3

 In case a line is NOT found we below any sensor we used value we got last time.

This is done by storing the current line position in a variable sprev just before the

end of main loop.

 Now a PID algorithm is used to find out the control variable from the current

position and required position.

 Current Position it is the position of line as read by the sensors.

 Required Position is 3 (to keep the line on the middle sensor whose number is 3)

37

Figure 3.4Line Following Programming Algorithm

Start

Infinite

loop

s=1or2

s=5or4

s=oxFF

s=3

Move motor A (left)&motor B(right)

No

Yes

Yes

Yes

Yes

No

No

No

Read sensors

Normal move

shift to right

and eright

shift to right and

eright

Restart and s=
Previous state

Wait

38

 Then we make the control variable come within a range of -510 to +510

 When the control variable is more than 0 that means line is towards the left, so we

need to take right turn to correct the error and bring the robot back to track. To do

a right turn we need to make the right motor go slow by the amount of control (if

control is less than 255).

 if control is more than 255 then we need to make the right motor go in opposite

direction by the amount of control.

 This will create a much faster right turning.

 Similarly if control variable is less than 0 that means line is towards the right, so

we need to take left turn to correct the error and bring the robot back to track. The

whole code looks like this.

Figure3.5 Flow chart of the code

39

 If Right black line sensor (sensor5=1) than LED5 (ON) .

 If Right black line sensor (sensor4=1) than LED4 (ON) .

 If Middle black line sensor (sensor3=1) than LED3 (ON).

 If Left black line sensor (sensor2=1) than LED2 (ON).

 If Left black line sensor (sensor1=1) than LED1 (ON).

Figure 3.6 LED &SENSORS programming

40

 3.2.3 Voltage Regulator 78xx

 Voltage regulators convert fixed DC output voltage from variable DC. The

most commonly used ones are 7805 and 7812. 7805 gives fixed 5V DC voltage if

input voltage is between 7.5V to 20V. They help to maintain a steady voltage

level despite varying current demands and input voltage variations. If input

voltage is <7.5 V then regulation whon't i.e. if input is 6V then output may be 5V

or 4.8V, but there are some parameters for the voltage regulators like maximum

output current capability, line regulation etc.. , that won't be proper. To identify

the leads of the 7805, you have to keep the lead downward and the writing to your

side, (see the figure 3.7). You can see the heat sink above the voltage regulator.(1-

input,2-gnd,3-output)
[2]

.

Figure 3.7circuit of regulator and sample of integrated circuit

Figure above shows how to use 7805 voltage regulator. Here you can see that

coupling capacitors are used for good regulation. But there is no need for it in

normal case. But if 7805 is used in analog circuit we should use capacitor,

otherwise the noise in the output voltage will be high. The mainly available 78xx

IC's are 7805, 7809,7812,7815
[2]

.

 3.2.4 Processing System

 Processing system acts as the Brain of robot, which generates desired output

for corresponding inputs. For that we use microcontrollers. In present days, there

are several companies that manufacture microcontrollers, see the figure 3.8. For

example ATMEL, Microchip, Intel, Motorola etc. We will be using ATmega8L

microcontroller in our robot. It is an ATMEL product. It is also called AVR.

41

 It's used ATmega8L because Line follower robot requires simple

microcontroller as it uses simple algorithms. We can use any microcontroller for

that.It is an ISP (In System Programmable) device. It means programming

(Burning) of ATmega8 IC can be done without removing it from the system.

Note: Programming (Burning) of a microcontroller means transferring the code

from computer to microcontroller. More details show the appendix B.

 It has on chip PWM (Pulse Width Modulation) circuit at three pins (Pin 15, 16

and 17). We have explained PWM in another tutorial.

 It consumes low power than other microcontrollers.

 It has an inbuilt RC oscillator. (Oscillator is a clock generator circuit).

3.3.1Hardware Details

Figure 3.8 integrated circuit of ATmega8L

 3.3.2 Basic Hardware Connections of ATmega8

 Pin 1 (Reset): The use of reset pin to reset the ATmega8 microcontroller. This

can be done by connecting this pin to ground. But in normal mode of execution it

should have at least 2.7V.

 Pin 7 and 20 (Vcc): Pin 7 and 20 should be connected to Power supply. (2.7 to

5.5 volt for ATmega8L) .

 Pin 8 and 22 (Ground): Pin 8 and 22 should be connected to Ground.

42

 Input and Output Ports

 In ATmega8 we have three I/O (input/output) ports viz. Port B, Port C, Port D .

 One can configure any pin of all these ports as input or output pin by software.

 We are using Port B pins (PB0 to PB3) as output pins because at pinPB1 and

PB2 we have on-chip PWM output that can control the speed of motors. Pin

PORT Connection PWM 14 PB0 Negative of right NO 15 PB1 Positive of right

YES 16 PB2 Positive of Left YES 17 PB3 Negative of Left NO
[2]

 more details

sees the appendix C.

Table 3.1 function of pins at ATmega8L microcontroller

 Thus we can use Port C or Port D or remaining Pins of Port B as input. But

forthe sake of simple hardware connection we choose Port D pins as input pins

 3.3.3Burner (or Programmer)

 Burner (or programmer) is the circuit used to transfer the code from computer

to microcontroller IC. For programming AVR there are different types of burners

available Eg stk200, stk500, jtag2 etc. We are using stk200 programmer.

 3.3.3.1

 i. Requirements

Parallel Port DB 25 connector (connects to the computer)

5 Pin RMC connector goes to AVR PCB.

5 wired Bus They are shown in following figure 3.8.

Pin Port Connection

14 PB0 Negative of right

15 PB1 Positive of right

16 PB2 Positive of left

17 PB3 Negative of left

18 PB4 medium

43

Figure 3. 9connector cable

ii. Connections

Connections are given by the following figure 3.10.

Figure 3.10 idea of connector operation

Table 3.2 Explanations of Pins of ATmega8

SCK SPI bus master clock input

MOSE Master output \ slave input

RESET Reset pin

MISO Master input \ slave output

GND Ground

44

 3.3.4Program Details

 i. Programming and Simulation

 Programs for the AVR series of microcontrollers can be written in assembly

(AVR ASM), C and BASIC. AVR Studio, WinAVR etc. are some free

development software's for programming the AVR Microcontrollers. We are using

winAVR for programming and AVR Studio for simulating (Simulation means

debugging the code on software, one can virtually give the input and check the

output for that code). In winAVR programmers Notepad we write our C code,

after compilation it generates ‘.hex’ file that is a hardware level code.

i.Motor Output System

 For moving a robot we have to dc motor attached to wheels gears.

ii. Dc Motor

 Dc motor is most easy to control. One dc motor requires only two signals for

its operation. If we want to change its direction just reverse the polarity of power

supply a cross it. We can vary speed by varying the voltage across motor. By

using two motors we can move our robot in any direction. This steering

mechanism of robot is called as differential drive. show figure 3.11 and 3.12

Figure 3.11 Description of various parts

45

Figure 3.12 Different Types of Movement of Robot

 iii. Motor Driver L293D(H-bridge)

 From microcontroller we cannot connect a motor directly because

microcontroller cannot give sufficient current to drive the DC motors. Motor

driver is a current enhancing device; it can also be act as Switching Device. Thus

we insert motor driver in between motor and microcontroller.

 Motor driver take the input signals from microcontroller and generate

corresponding output for motor.

Figure 3.13 Pin details of L293

 This is a motor driver IC that can drive two motor simultaneously. Let's see how

we use this IC (see in the figure 3.13)

46

 3.3.6.1 operation H- bridge

The H-bridge arrangement is generally used to reverse the polarity of the motor,

but can also be used to 'brake' the motor, where the motor comes to a sudden stop,

as the motor's terminals are shorted, or to let the motor 'free run' to a stop, as the

motor is effectively disconnected from the circuit. The following table summarises

operation, with S1-S4 corresponding to the diagram above.

Figure 3.14 Structure of an H bridge (highlighted in red)

Figure 3.15 The two basic states of an H bridge

 Table 3.3 Output of tow motors

S

1

S

2

S

3

S

4

Result

1 0 0 1 Motor moves

right

0 1 1 0 Motor moves

left

0 0 0 0 Motor free runs

0 1 0 1 Motor brakes

1 0 1 0 Motor brakes

1 1 0 0 Shoot-through

0 0 1 1 Shoot-through

1 1 1 1 Shoot-through

47

Figure 3. 16 Block diagram H bridge

 3.4.1 Sensing of the Black Line

The sensors used for the project are Reflective Object Sensors, 0PB710F that

are already ready in the Electronic Lab. The single sensor consists of an infrared

emitting diode and a NPN Darlington phototransistor. When a light emitted from

the diode is reflected off an object and back into the phototransistor, output current

is produced, depending on the amount of infrared light, which triggers the base

current of the phototransistor.

 In my case, the amount of light reflected off a black line is much less than that of

a white background, so we can detect the black line somehow by measuring the

current. (This current is converted to voltage.)

Figure 3.17 Sensor in an opto-coupler

48

Figure 3.18 Sensor circuit redrawn with the comparator

 3.4.2 Control of DC Motor

 The easy method to navigate the black track line is to turn ON and OFF the

left or the right DC motor according to the sensor reading (black turn OFF and

white turn ON), but using this method will make the LFR to move in zigzag way.

By proportionally control both left and right DC motor speed according to the

light intensity level received by the photocell sensor (reflected back by the black

track line) we could make the LFR easily navigate this track. The common

technique to control the motor speed efficiently is to use a pulse signal known as

the pulse width modulation or PWM for short.

PWM basically is an ON and OFF pulse signal with a constant period or

frequency. The proportion of pulse ON time to the pulse period is called a “duty

cycle” and it expressed in percentage. For example if the proportion of pulse ON

time is 50% to the total pulse period than we say that the PWM duty cycle is 50%.

The PWM duty cycle percentage is corresponding to the average power produced

by the pulse signal; the lower percentage produces less power than the higher

percentage.

Therefore by changing the PWM duty cycles we could change the average voltage

across the DC motor terminals, this mean we could vary the DC motor speed just

by changing the PWM duty cycle. Therefore to make the LFR smoothly navigate

the black track line, we have to adjust the PWM duty cycle according to the

photocell sensor reading. The brighter light intensity level received by sensor

(sensor is on the white surface) will result in higher PWM duty cycle percentage

and the darker light intensity level (sensor is on the black line) received by

photocell sensor will result in lower PWM duty cycle percentage.

49

Figure 3.19 PWM timing diagram

3.5Principles How a Robot Can Follow a Guideline

 A robot seeks a guideline by riding on a spiral trajectory until it crosses. Even

then the robot starts to follow a given guideline. There are three fundamental

situations that could happen:

3.5.1 Being on a Line

 The simplest case is when both sensors are above a guideline and a robot

follows it going straight on, show figure 3.20.

Figure 3.20 Being on line

 3.5.2 Loosing a Line

 Approaching a curve, a right sensor looses contact with a line. The robot

unclothes its left engine; thereby it begins to turn left to return to the line. Show

figure 3.21

50

Figure 3.21 Losing a line

 3.5.3 Outside of a Line

 If a curve is too sharp (it means a robot’s turning radius is greater than a

curve radius of the line), a robot can lose the guideline and it is outside of it. It

changes the direction of the engine, which causes the robot to turn towards to the

line. The sensors that are placed off axis get the same situation could also occur at

the end of the line. In such case the robot reverses at 180 degrees and turns back,

Show figure 3.22

Figure 3.22 Outside

51

3.6 Line follower board using ATmaga8 circuit

Figure 3.23 Line Following Robot Simulation Circuit

