#include <avr/io.h>
#include <util/delay.h>

#include "lib/adc/adc.h"
#include "lib/motor/motor.h"
#include "lib/led/led.h"

#define SENSOR_THRES 800

/IMap Sensor Number to ADC Channel
#define SENSOR1 0
#define SENSOR2 1
#define SENSORS3 2
#define SENSOR4 3
#define SENSORS5 4

/IGloabal varriables

float pGain = 200; //Proportional Gain
float iGain = 0.2; //Integral Gain

float dGain = 120; //Differential Gain
int delay = 10;

int32_t elnteg = 0; //Integral accumulator
int32_tePrev =0; //Previous Error

void DelayMs(uint8_t ms);
float ReadSensors();
float PID(float cur_value,float req_value);

float control;
float s;

int main(void)

{

/lInitialize Motors subsystem.
MotorInit();

/lnitialize LED subsystem
LEDInit();

/lnitialize Analog to Digital Converter (ADC)
InitADC();

while(1)
{

/[Previous Sensor Reading

float sprev;

/[Take current sensor reading

[Ireturn value is between 0 to 5

//When the line is towards right of center then value tends to 5

//When the line is towards left of center then value tends to 1

/IWhen line is in the exact center the the valeue is 3
s=ReadSensors();

/N1 line is not found beneath any sensor, use last sensor value.
if(s==0xFF)
{

s=sprev;

¥

/[PID Algorithm generates a control variable from the current value
/land the required value. Since the aim is to keep the line always
//beneath the center sensor so the required value is 3 (second parameter)
/[The first argument is the current sensor reading.

/[The more the difference between the two greater is the control variable.
/[This control variable is used to produce turning in the robot.

//When current value is close to required value is close to 0.

control = PID(s,3.0);

/ILimit the control
if(control > 510)

control = 510;
if(control < -510)
control = -510;

if(control > 0.0)//the left sensor sees the line so we must turn right

{
if(control>255)

MotorA(MOTOR_CW,control-255);
else
MotorA(MOTOR_CCW,255-control);

MotorB(MOTOR_CW,255);
}

if(control <= 0.0)//the right sensor sees the line so we must turn left

if(control<-255)
MotorB(MOTOR_CCW,-(control+255));
else
MotorB(MOTOR_CW,255+control);

MotorA(MOTOR_CCW,255);
}

/[Delay

DelayMs(delay);

sprev=s;
}
}

void DelayMs(uint8_t ms)
{
uint8_ti;
for(i=0;i<ms;i++)

_delay_ms(1);
¥
}

/Nmplements PID control
float PID(float cur_value,float req_value)
{

float pid,;

float error;

error = req_value - cur_value;
pid = (pGain * error) + (iGain * elnteg) + (dGain * (error - ePrev));

elnteg += error; / integral is simply a summation over time
ePrev = error; /I save previous for derivative
return pid;

}

float ReadSensors()

{

uint16_t eright,right,middle,left eleft;
uint8 t sensorl,sensor2, sensor3, sensor4,sensors;

float avgSensor = 0.0;

eright=Read ADC(SENSOR5);
if(eright>SENSOR_THRES)//Right black line sensor
{
sensor5 = 1;
LEDON(5);
}
else
{
sensor5 = 0;
LEDOff(5);
}

/l Read analog inputs

right=ReadADC(SENSOR4);
if(right>SENSOR_THRES)//Right black line sensor
{

sensord = 1;

LEDON(4);
}

else

{
sensord = 0;
LEDOff(4);

}

middle=Read ADC(SENSORQ);
if(middle>SENSOR_THRES)// Middle black line sensor
{
sensor3 = 1;
LEDON(3);
}
else
{
sensor3 = 0;
LEDOff(3);
¥

left=Read ADC(SENSOR?2);
if(left>SENSOR_THRES)// Left black line sensor
{
sensor2 = 1;
LEDON(2);
}
else
{
sensor2 = 0;
LEDOff(2);
}

eleft=Read ADC(SENSOR1);
if(eleft>SENSOR_THRES)// Left black line sensor
{
sensorl = 1;
LEDON(1);
}
else
{
sensorl = 0;
LEDOff(1);
}

if(sensorl==0 && sensor2==0 && sensor3==0 && sensor4==0 && sensor5==0)

{

return OxFF;

}

/I Calculate weighted mean
avgSensor = (float) sensorl*1 + sensor2*2 + sensor3*3 + sensord*4 + sensor5*5 ;
avgSensor = (float) avgSensor / (sensorl + sensor2 + sensor3 + sensor4 + sensors);

return avgSensor;

