

#include <avr/io.h>

#include <util/delay.h>

#include "lib/adc/adc.h"

#include "lib/motor/motor.h"

#include "lib/led/led.h"

#define SENSOR_THRES 800

//Map Sensor Number to ADC Channel

#define SENSOR1 0

#define SENSOR2 1

#define SENSOR3 2

#define SENSOR4 3

#define SENSOR5 4

//Gloabal varriables

float pGain = 200; //Proportional Gain

float iGain = 0.2; //Integral Gain

float dGain = 120; //Differential Gain

int delay = 10;

int32_t eInteg = 0; //Integral accumulator

int32_t ePrev =0; //Previous Error

void DelayMs(uint8_t ms);

float ReadSensors();

float PID(float cur_value,float req_value);

float control;

float s;

int main(void)

{

 //Initialize Motors subsystem.

 MotorInit();

 //Initialize LED subsystem

 LEDInit();

 //Initialize Analog to Digital Converter (ADC)

 InitADC();

 while(1)

 {

 //Previous Sensor Reading

 float sprev;

 //Take current sensor reading

 //return value is between 0 to 5

 //When the line is towards right of center then value tends to 5

 //When the line is towards left of center then value tends to 1

 //When line is in the exact center the the valeue is 3

 s=ReadSensors();

 //If line is not found beneath any sensor, use last sensor value.

 if(s==0xFF)

 {

 s=sprev;

 }

 //PID Algorithm generates a control variable from the current value

 //and the required value. Since the aim is to keep the line always

 //beneath the center sensor so the required value is 3 (second parameter)

 //The first argument is the current sensor reading.

 //The more the difference between the two greater is the control variable.

 //This control variable is used to produce turning in the robot.

 //When current value is close to required value is close to 0.

 control = PID(s,3.0);

 //Limit the control

 if(control > 510)

 control = 510;

 if(control < -510)

 control = -510;

 if(control > 0.0)//the left sensor sees the line so we must turn right

 {

 if(control>255)

 MotorA(MOTOR_CW,control-255);

 else
 MotorA(MOTOR_CCW,255-control);

 MotorB(MOTOR_CW,255);

 }

 if(control <= 0.0)//the right sensor sees the line so we must turn left

 {

 if(control<-255)

 MotorB(MOTOR_CCW,-(control+255));

 else
 MotorB(MOTOR_CW,255+control);

 MotorA(MOTOR_CCW,255);

 }

 //Delay

 DelayMs(delay);

 sprev=s;

 }

}

void DelayMs(uint8_t ms)

{

 uint8_t i;

 for(i=0;i<ms;i++)

 {

 _delay_ms(1);

 }

}

//Implements PID control

float PID(float cur_value,float req_value)

{

 float pid;

 float error;

 error = req_value - cur_value;

 pid = (pGain * error) + (iGain * eInteg) + (dGain * (error - ePrev));

 eInteg += error; // integral is simply a summation over time

 ePrev = error; // save previous for derivative

 return pid;

}

float ReadSensors()

{

 uint16_t eright,right,middle,left,eleft;

 uint8_t sensor1,sensor2, sensor3, sensor4,sensor5;

 float avgSensor = 0.0;

 eright=ReadADC(SENSOR5);

 if(eright>SENSOR_THRES)//Right black line sensor

 {

 sensor5 = 1;

 LEDOn(5);

 }

 else
 {

 sensor5 = 0;

 LEDOff(5);

 }

 // Read analog inputs

 right=ReadADC(SENSOR4);

 if(right>SENSOR_THRES)//Right black line sensor

 {

 sensor4 = 1;

 LEDOn(4);

 }

 else
 {

 sensor4 = 0;

 LEDOff(4);

 }

 middle=ReadADC(SENSOR3);

 if(middle>SENSOR_THRES)// Middle black line sensor

 {

 sensor3 = 1;

 LEDOn(3);

 }

 else
 {

 sensor3 = 0;

 LEDOff(3);

 }

 left=ReadADC(SENSOR2);

 if(left>SENSOR_THRES)// Left black line sensor

 {

 sensor2 = 1;

 LEDOn(2);

 }

 else
 {

 sensor2 = 0;

 LEDOff(2);

 }

 eleft=ReadADC(SENSOR1);

 if(eleft>SENSOR_THRES)// Left black line sensor

 {

 sensor1 = 1;

 LEDOn(1);

 }

 else
 {

 sensor1 = 0;

 LEDOff(1);

 }

 if(sensor1==0 && sensor2==0 && sensor3==0 && sensor4==0 && sensor5==0)

 {

 return 0xFF;

 }

 // Calculate weighted mean

 avgSensor = (float) sensor1*1 + sensor2*2 + sensor3*3 + sensor4*4 + sensor5*5 ;

 avgSensor = (float) avgSensor / (sensor1 + sensor2 + sensor3 + sensor4 + sensor5);

 return avgSensor;

}

