Sudan University of Science and Technology College of Engineering School of Electronics Engineering

Solar Tracking System Design and Simulation

A Research submitted in partial fulfillment for the requirements of the Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

- 1. Azza Ahmed Mohammed Ahmed
- 2. Esraa Gaffar Mustafa
- 3. Nada Abdelwahab Mekki
- 4. Rayan Ishag Fagir

Supervisor:

Dr. Khalifa Eltayb

الآيسة

قال تعالى:

(... يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوثُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِيرٌ (11))

سورة المجادلة (11) صدق الله العظيم

DEDICATION

This project is dedicated to...

The memory of *Alwaia Salih* a loving mother who passed away before seeing the success of her daughter

Our beloved *Mothers* and *Fathers*

For their love, endless support and encouragement.

Brothers ,Sisters and Our love ones

Dr. Khalifa Eltayeb

To those who accompanied us in path of *friendship*

ACKNOWLEDGEMENT

We are thankful to Almighty **ALLAH**, most Gracious, who in His infinite mercy has guided us to complete project.

Eltayb, for the supervision and constant support. His invaluable help of constructive comments and suggestions throughout the experiment. Special thank goes to Dr. Alaa Eldin Awoda, Mr. Jaafar Abd Alhameed Also workshops and laboratories supervisors at the mechanical department.

Sincere thanks to eng. Abdalla Kamal and eng. Ashrf.

Abstract

In daily life, the need of energy resources is increasing every day, so the renewable resources such as solar energy, became an attractive energy source. In Sudan sources of electrical energy are mainly generated from water, another source of energy is solar energy by using solar cells that converts sun radiation to electrical energy that can be used in common electrical application. Solar Cell main problem is the low efficiency of fixed panel and/or low accuracy of being vertical towards the sun, which results into wasting some of the useful energy. This project is concerned with developing a tracking system that tracks the sun from east to west during the day hours vertically to maximize the energy absorbed by the solar panels. The system is controlled by microcontroller which reads values from LDRs and processes the information to move the panel using stepper motor based on LDRs information.

المستخلص

في الحياة اليومية، الحاجة لموارد الطاقة تتزايد كل يوم لذلك فإن الموارد المتجددة مثل الطاقة الشمسية أصبحت مصدرا جذابا للطاقة .تعتبر الموارد المائية هي المصدر الاساسي لتوليد الطاقة الكهربائية في السودان ، مصدر آخر للطاقة وهو الطاقة الشمسية عن طريق استخدام الخلايا الشمسية التي تحول الإشعاع الشمسي إلى طاقة كهربائية يمكن استخدامها في مجموعة من التطبيقات. المشكلة الرئيسية للخلية الشمسية هي قلة كفاءة الخلية الناتجة من ثبات اللوح و / أو إنخفاض دقتها من كونها عمودية نحو الشمس، مما يؤدي إلى فقدان الطاقة. يهتم هذا المشروع بتطوير نظام لتتبع الشمس من الشرق إلى الغرب خلال ساعات اليوم بجعل سقوطها عموديا لتحقيق أقصى قدر من الطاقة الممتصة بواسطة الألواح الشمسية. يتم التحكم في النظام عن طريق متحكم دقيق الذي يقرأ القيم من المقاومات الضوئية ويقوم بمعالجة المعلومات لتحريك اللوحة باستخدام محرك الخطوة بناء على معلومات الصوئية.

List of contents

الآيــــة	I
DEDICATION	
ACKNOWLEDGEMENT	IV
Abstract	V
المستخلص	VI
List of tables	X
List of figures	XI
List of symbols	XIII
List of abbreviation	XIV
Chapter one	1
Introduction	1
1.1 Preface	2
1.2 Problem statement:	3
1.3 Proposed solution:	3
1.4 Objectives:	3
1.5 Methodology:	3
1.6 Thesis outlines:	4
Chapter Two Error! F	Bookmark not defined.
Literature review Error! F	Bookmark not defined.
2.1 Background: Error! F	Bookmark not defined.
2.1.1 Solar Cell History: Error! F	Bookmark not defined.
2.1.2 Solar Cell Light Absorption: Error! F	Bookmark not defined.
2.1.3 Energy production: Error! F	Bookmark not defined.
2.1.4Types of Photovoltaic (PV) Cell: defined.	Error! Bookmark not
2.1.4.1 Mono-crystalline Silicon Cells defined.	Error! Bookmark not

2.1.4.2 Polycrystalline Silicon Cell	sError! Bookmark not
defined.	
2.1.4.3Thick-film silicon	Error! Bookmark not defined.
2.1.4.4Amorphous Silicon	Error! Bookmark not defined.
2.1.5 Solar trackers:	Error! Bookmark not defined.
2.1.5.1 Solar tracker types:	Error! Bookmark not defined.
2.1.5.2 Tracker components:	Error! Bookmark not defined.
2.2 Field visit:	Error! Bookmark not defined.
2.2.1Types of solar cells	Error! Bookmark not defined.
2.2.2 Power efficiency	Error! Bookmark not defined.
2.2.3 Solar trackers	Error! Bookmark not defined.
2.2.4 Solar cells problems	Error! Bookmark not defined.
2.3 Related works:	Error! Bookmark not defined.
Chapter Three	Error! Bookmark not defined.
System components	Error! Bookmark not defined.
3.1 System Block diagram:	Error! Bookmark not defined.
3.1.1 Microcontroller	Error! Bookmark not defined.
3.1.2 Motors	Error! Bookmark not defined.
3.1.2.1Stepper Motor	Error! Bookmark not defined.
3.1.3 Motor drive circuit (ULN2003)	Error! Bookmark not defined.
3.1.4 Sensors	Error! Bookmark not defined.
3.1.4.1 Photo sensors (LDR)	Error! Bookmark not defined.
3.1.5 Conditioning circuit	Error! Bookmark not defined.
3.1.6 Power supply:	Error! Bookmark not defined.
Chapter Four	Error! Bookmark not defined.
System Design	Error! Bookmark not defined.
4.1 System scenario	Error! Bookmark not defined.
4.2 Solar panel design	Error! Bookmark not defined.
4.3 Flow chart:	Error! Bookmark not defined.
4.4 System circuit	Error! Bookmark not defined.

Chapter five	. Error! Bookmark not defined.
System building	. Error! Bookmark not defined.
Chapter five	. Error! Bookmark not defined.
System building	. Error! Bookmark not defined.
5.1 Simulation:	. Error! Bookmark not defined.
5.1.1 Day light mode:	. Error! Bookmark not defined.
5.1.2Night mode:	. Error! Bookmark not defined.
5.2 calculations:	. Error! Bookmark not defined.
5.3 Hardware implementation:	. Error! Bookmark not defined.
5.3.1 Electronic part:	. Error! Bookmark not defined.
5.3.2 The mechanical part:	. Error! Bookmark not defined.
5.3.2.2 Calculations:	. Error! Bookmark not defined.
5.3.2.3 The panel:	. Error! Bookmark not defined.
5.3.2.4 The rotating shaft:	. Error! Bookmark not defined.
5.3.2.5 The bearings:	. Error! Bookmark not defined.
5.3.2.6 The Stands:	. Error! Bookmark not defined.
Chapter Six	. Error! Bookmark not defined.
Conclusion and recommendations	. Error! Bookmark not defined.
6.1 Preface	. Error! Bookmark not defined.
6.2 Conclusion	. Error! Bookmark not defined.
6.3 Recommendation	. Error! Bookmark not defined.

List of tables

TABLE NO.	TITLE	PAGE
Table 3.2: full step mode		19
Table 3.3: half step mode		25
Table 3.1: difference between 1	microcontroller, microprocessor	and plc.
		25

List of figures

Figure no.	TITLE	PAGE
Figure 2.1: mono-ci	rystalline cell	9
Figure 2.2: polycrys	stalline cell	9
Figure 2.3: thick file	m cell	10
Figure 2.4: amorpho	ous silicon cell	10
Figure 2.5: field vis	it	13
Figure 2.6: solar tra	acke	13
Figure 3.1: system b	olock diagram	17
figure 3.2: microcon	troller atmega16	19
Figure 3.3: stepper	motor	22
Figure 3.4: stepping	g mode	23
Figure 3.5: ULN200	03	27
Figure 3.6: light der	pendent resistor (LDR)	29

Figure 3.7: power supply overview	31
Figure 4.1: solar cell top view	33
Figure 4.2: stepper motor view of the tracker design	35
Figure 4.3:3D view of solar cell design	35
Figure 4.3:3D side view of the tracker design	36
Figure 4.4:3D back view of the tracker design	36
Figure 4.5: system flow chart	37
Figure 4.6: System Circuit	40
Figure 5.1: light detection	43
Figure 5.2: motor moving	43
Figure 5.3: best position	44
Figure 5.4: dark detection	45
Figure 5.5: motor rotating back	45
Figure 5.6: microcontroller shut down	46
Figure 5.7: voltage divider	46
Figure 5.8: LDRs value	48
Figure 5.9: LDR compression	49
Figure 5.10: upper view of the panel	51
Figure 5.11: the shaft	52
Figure 5.12: the two bearings	53
Figure 5.13 the stands	53

List of symbols

K Kilo

V Volt

T system torque

Tmotor inertia torque of motor

Tin inertia torque

M system mass

G gravitational acceleration

L system length

F system force

R shaft radius

S.F safety factor

 $\Omega \hspace{1cm} Ohm$

μ Coefficient of friction

List of abbreviation

<u>A</u>

AC Alternating Current

ADC Analog to Digital Converter

A/D Analog to Digital Converter

AVR

<u>C</u>

CPU Central Processing Unit

CMOS Complementary Metal-Oxide

Semiconductor

 $\underline{\mathbf{D}}$

DC Direct Current

D/A Digital to Analog Convertor

<u>E</u>

EEPROM Electrically Erasable Programmable Read

Only

Memory

I

IC Integrated Circuit

I/O Input/ Output

 \mathbf{L}

LDR Light Dependent Resister

<u>N</u>

NPN Negative, Positive, Negative

<u>P</u>

PV Photo Voltaic

PWM Pulse Width Modulation

PLC Programmable Logic Controller

<u>R</u>

ROM Read Only Memory

RAM Random Access Memory

RISC Reduced Instruction Set Computing

<u>S</u>

S sensor

SMPS Switched Mode Power Supply

SPRAM Static Programmable Random Access

Memory

<u>U</u>

ULN unique learning number

USB Universal Serial Bus

Chapter one

Introduction

Chapter one

Introduction

1.1 Preface:

Finding energy sources to satisfy the world's growing demand is one of society's foremost challenges for the next half-century. Sun energy is the cleanest and most abundant renewable energy source available.

Modern technology can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.[1]

This project describes in detail the design and construction of a prototype for solar tracking system. Solar trackers are devices used to orient photovoltaic panels toward the sun. Since the sun position changes with seasons and time of day, trackers are used to align the allocation of the sun to maximize energy production. Several factors must be considered when determining the use of trackers. Some of these include: the solar technology being used, the amount of direct solar irradiation, the region where the system is deployed, and the cost to install and maintain the trackers. In this project the main goal is to absorb the maximum energy from the sun and convert it into electricity, achieving this goal require designing a close loop solar tracking system which analyze the environment and locate the sun position using photo sensor then change the tracker position using a motor until reach the perfect position. The perfect position is when the sun is vertical on the panels.

1.2 Problem statement:

The low efficiency of the solar cell because of fixed panel and/or low accuracy of being vertical towards the sun which results into wasting some of the useful energy.

1.3 Proposed solution:

Design a system that makes solar panels absorb as much energy as possible during the daylight hours by designing a solar tracking system that sense the light intensity then change the solar panel position angle till it reach the 90° angle that gives the highest power.

1.4 Objectives:

The main objective of this project is:

- To design the 3D layout of the solar tracking system.
- To simulate a Software of the solar tracking system.
- To build Hardware implementation of the solar tracking system.
- To build a hardware prototype of the solar tracking system.

1.5Methodology:

Firstly determine the objectives of the project and how to achieve them. Secondly, visit energy research center to collect information about solar cells . After that, review previous studies and researches in the area of solar tracking systems and write the literature review. Then choose the mechanism that helps in achieving the maximum absorption of the sun radiation. Thirdly build a simulated design to check the tracking system working. Fourthly build hardware prototype that contain a photo sensors, microcontroller, stepper motor, motor drive circuit and circuit to drive the signals from photo sensors to

microcontroller and testing the system performance. Finally write the final result, conclusion and recommendation.

1.6 Thesis outlines:

- Chapter one includes preface, problem statement, proposed solution, objectives and methodology.
- Chapter two includes definitions and types of solar cell, site visit and related works.
- Chapter three include block diagram, and system component.
- Chapter four includes system scenario, solar panel 3D layout, flow chart and system circuit.
- Chapter five contain the system simulation design and hardware implementation.
- Chapter six include conclusion and recommendations.