Sudan University of Science and Technology College of Engineering Electronics Engineering School

Prototype Design of Autonomous Mobile Agents for Environment Monitoring

A Research Submitted In Partial Fulfillment for the Requirements of the Degree of B.Sc (Honors) in Electronics Engineering

Prepared By:

- 1. Eman Abdelghani Bakri Mohamed.
- 2. Maisan Abd Elgadir Omer Abd Elgadir.
- 3. Rawan Shreef Abd-alRazeg Ibrahim.

Supervised by:

Mr. Khalifa Eltayeb Khalifa

September, 2014

الآبة

قال تعالى:

﴿ وَقُلِ اعْمَلُوا فَسَيَرَى اللّهُ عَمَلَكُمْ وَرَسُولُهُ وَ النّمُؤْمِنُونَ ﴿ وَسَتُرَدُّونَ النّمُؤْمِنُونَ ﴾ وَسَتُرَدُّونَ إِلَى عَالِمِ النّعَيْبِ إِلَى عَالِمِ النّعَيْبِ وَ الشّهَادَةِ فَيُنَبِّنُكُم وَ النّهَادَةِ فَيُنَبِّنُكُم وَ النّهَادَةِ مَنْ النّبُلُمُ تَعْمَلُونَ ﴾ والنّشهادَةِ مَعْمَلُونَ ﴾ بما كُنتُمْ تَعْمَلُونَ ﴾ بما كُنتُمْ تَعْمَلُونَ ﴾

سورة التوبه(١٠٥)

DEDICATION

To Our Mother's A strong and gentle soul who taught us to trust in ALLAH, believe in hard work and that so much could be done with little.

To Our Father's For earning an honest living for us and for supporting and encouraging us to believe in our self

To Mr. Khalifa Eltayeb Khalifa Our great supervisor who spent a lot of time to help us in preparation of this project

To Our Brothers and Friends For being our guardian during our educational career

We extend our pleasures to the staff of **Sudan University of Science and Technology** and to all those who take our hands and helped us in the preparation of this project.

ACKNOWLEDGEMENT

First and foremost all praises are due to ALLAH, for all physical and mental support throughout our life and during this project phases, and his peace and blessing be on the prophet.

We are so grateful to **OUT Parents** for taking care with us.

We would like to express our sincere gratitude to our **Supervisor IMT.** Khalifa Eltayeb who was extremely helpful and offered invaluable assistance, patience, support and guidance until reaching this state.

Special thanks to *Dr. Alaa Eldin Awoda* and to *ENG.Alaa youssif shammed*, also we have to thank our all friends for helping us to complete this project especially our fellow student *ENG. Safwat magdi.*

ABSTRACT

In recent years, remote environment monitoring has been significantly improved with wireless sensor networking technology. This improvement helps the human being to avoid access to hazard areas.

This research concerned with design and implement of an autonomous mobile robot agent that can access to hazard areas. This mobile robot will have the ability to move forward, backward, turn left and right, with characteristic of object detection and avoidance. The agent also has the capability to sense the environmental parameters of the region, and send that data to the remote monitoring terminal using wireless communication.

المستخلص

في السنوات الأخيرة حدث تطور كبير في كيفية مراقبة و رصد العوامل البيئية عن (مثل درجة الحرارة والرطوبه) نسبة بعد لإستخدام تكنولوجيا شبكات الإستشعار اللاسلكية. هذا التطور أسهم في مساعدة الإنسان ليستطيع تجنب الوصول إلى هذه المناطق

هذا البحث يهتم بتصميم وتنفيذ روبوت ذاتي الحركة الذي بدوره يستطيع الوصول والعمل في هذه المناطق الخطره. هذا الروبوت لديه القدرة على التحرك في جميع الإنجاهات بالاضافة لذلك فإنه يستطيع الكشف عن المعوقات التي تواجهه و تجنبها , كما لديه القدرة على إستشعار التغيرات في عوامل البيئة المختلفة , و إرسال تلك البيانات الي المركز المسؤول عن المراقبة عن طريق المركز المسؤول عن المراقبة عن طريق المتخدام شبكة للاتصالات اللاسلكية.

List of Contents

DEDICATION	II
ACKNOWLEDGEMENT	III
ABSTRACT	IV
المستخلص	V
LIST OF CONTENTS	VI
LIST OF FIGURES	X
LIST OF TABLES	XII
ABBREVIATIONS	XIII
CHAPTER ONE: INTRODUCTION	2
1.1Preface:	2
1.2PROBLEM STATEMENT:	3
1.3PROPOSED SOLUTION:	3
1.4 RESEARCH OBJECTIVE:	3
1.5METHODOLOGY:	3
1.6Research Outline:	4
CHAPTER TWO: LITERATURE REVIEWE	ERROR! BOOKMARK
NOT DEFINED.	
2.1BACKGROUND: ERROR! BO	OOKMARK NOT DEFINED.
2.1.1The Robot: Error!	Bookmark not defined.
2.1.2 History of Robotics: Error!	Bookmark not defined.

2.1.3 Advantages and Disadvantage of Robotics: Error! Bookmark not defined. 2.1.4 Wireless Sensor Networks (WSN):Error! Bookmark not defined. 2.1.4.1 Advantages and Disadvantages of WSN:Error! Bookmark not defined. 2.1.5 Mobile Wireless Sensor Network: Error! **Bookmark** not defined. 2.1.5.1 Advantages and Disadvantages of MWSN: Error! Bookmark not defined. 2.1.5.2 Applications of MWSN:..... Error! Bookmark not defined. 2.1.6Differences between WSNs and MWSNs:**Error! Bookmark** not defined. 2.1.7Sensors: Error! Bookmark not defined. 2.1.7.1 Classification of Sensors: .. Error! Bookmark not defined. 2.1.7.2 Navigation Sensors: Error! Bookmark not defined. 2.1.8Motors: Error! Bookmark not defined. 2.1.8.1 Dc Motor: Error! Bookmark not defined. 2.1.8.2 Servo Motor: Error! Bookmark not defined. 2.1.8.3 Stepper Motor:.....Error! Bookmark not defined. 2.1.9 Transmission Technologies: Error! Bookmark not defined. 2.1.9.1 Bluetooth: Error! Bookmark not defined. 2.1.9.2 Zigbee: Error! Bookmark not defined.

2.1.9.3 Radio Frequency RF:.....Error! Bookmark not defined.

2.2Literature Review: Error! Bookmark not defined.

CHAPTER THREE: SYSTEM DESIGNERROR! BOOKMARK NOT DEFINED.

3.1BLOCK DIAGRAM OF THE SYSTEM: ERROR!	BOOKMARK NOT
DEFINED.	
3.1.1Navigation Sensors:Error!	Bookmark not defined.
3.1.2Information Sensors: Error!	Bookmark not defined.
3.1.2.1Temperature Sensor (LM35):Error!	. Bookmark not
defined.	
3.1.2.2Gas Sensor (MQ-2): Error! 1	Bookmark not defined.
3.1.2.3Relative Humidity Sensor (HS1101)	:Error! Bookmark not
defined.	
3.1.3Interface Circuit: Error!	Bookmark not defined.
3.1.3.1DC Motor Driver (L293D): Error! 1	Bookmark not defined.
3.1.3.2Stepper Motor Driver (ULN2003AN	N):Error! Bookmark
not defined.	
3.1.4DC Motors: Error! 1	Bookmark not defined.
3.1.5Stepper Motor:Error!	Bookmark not defined.
3.1.6Microcontroller: Error!	Bookmark not defined.
3.1.7Transceiver Circuit (RF): Error!	Bookmark not defined.
3.1.8Voltage Regulator (L7805 – 5V): Error	! Bookmark not
defined.	
3.1.9Liquid Crystal Display (LCD): .Error!	Bookmark not defined.
3.2SYSTEM SCENARIO: ERROR! BO	OKMARK NOT DEFINED.
3.3 FLOW CHART OF THE SYSTEM: ERROR! BO	OOKMARK NOT DEFINED.
3.3.1Procedure to Gather Information: Error	! Bookmark not
defined.	

Error! Bookmark not defined.	Move Right:	edure to N	3.3.2Proc
Error! Bookmark not defined.	Move Left:	cedure to	3.3.3 Pro
Error! Bookmark not defined.	w Chart:	Main Flow	3.3.4The
SIMULATION AND DESIGN	CIRCUIT	FOUR:	CHAPTER
R! BOOKMARK NOT DEFINED.	ERR	•••••	•••••
T:ERROR! BOOKMARK NOT	OF THE CIRCU	MULATION (4.1 THE SIM
			DEFINED.
:Error! Bookmark not defined.	t of the Robo	Movemen	4.1.1The
Error! Bookmark not defined.	athering:	rmation G	4.1.2Info
Error! Bookmark not defined.	re Sensor:	Temperatu	4.1.2.1
Error! Bookmark not defined.	r:	Gas Senso	4.1.2.2
Error! Bookmark not defined.	Sensor:	Humidity S	4.1.2.3
Error! Bookmark not defined.	nal:	ual Termir	4.1.3Virt
ERROR! BOOKMARK NOT DEFINED.	не Ркојест:	CUIT OF TH	4.2The Cir
CIRCUIT: ERROR! BOOKMARK NOT	DESIGN OF TH	RDWARE I	4.3 THE HA
			DEFINED.
nsors:Error! Bookmark not	nformation Se	System In	4.3.1 The
			defined.
Error! Bookmark not defined.	re Sensor:	Temperatu	4.3.1.1
Error! Bookmark not defined.	r:	Gas Senso	4.3.1.2
Error! Bookmark not defined.	Test:	per Motor	4.3.2Step
Error! Bookmark not defined.	nsor Test:	rasonic Sei	4.3.3 Ult
Error! Bookmark not defined.	g:	ot Building	4.3.4Rob
Error! Bookmark not defined.	uit Design:	Final Circ	4.3.4The

CHAPTER FIVE: CONCLUSION	AND RI	ECOMM	ENDATI(N C
ERROR	R! BOOKM	ARK NO	T DEFINE	ED.
5.1Conclusion: E	RROR! BOO	KMARK N	OT DEFIN	E D.
5.2RCOMMENDATION: E	RROR! BOO	KMARK N	OT DEFIN	E D.
REFERENCES:ERROR	R! BOOKM	ARK NO	T DEFINE	ED.
APPENDICESERROR	R! BOOKM	ARK NO	T DEFINE	ED.
APPENDIX A: THE SIMULATION	CODEERI	ROR! B	OOKMAI	RK
NOT DEFINED.				
APPENDIX B: THE IMPLEMENTA	ATION CO	DE	ERRC	R!
BOOKMARK NOT DEFINED.				
APPENDIX C: THE BUDGET FOR	IMPLEM	ENTATI	ON ERRC	R!
BOOKMARK NOT DEFINED				

List of Figures

FIGURE 2-2: PERMANENT MAGNET STEPPER MOTOR. ERROR! BOOKMARK
NOT DEFINED.
FIGURE 2-3: VARIABLE RELUCTANCE STEPPER MOTOR ERROR!
BOOKMARK NOT DEFINED.
FIGURE 2-4: HYBRID STEPPER MOTOR ERROR! BOOKMARK NOT DEFINED.
FIGURE 3-1: BLOCK DIAGRAM OF MOBILE ROBOT CIRCUITRY ERROR!
BOOKMARK NOT DEFINED.
FIGURE 3-2: PIN DESCRIPTION OF ULTRASONIC SENSOR ERROR!
BOOKMARK NOT DEFINED.
FIGURE 3-3: LM35 PIN DESCRIPTION. ERROR! BOOKMARK NOT DEFINED.
FIGURE 3-4: (A) AND (B) MQ-2 GAS SENSOR ERROR! BOOKMARK NOT
DEFINED.
$\label{eq:figure3-5} Figure 3-5: (A) \ \text{and} \ (B) \ HS1101 \ Humidity \ Sensor \textbf{\textit{Error!}} \ \textbf{\textit{Bookmark}}$
NOT DEFINED.
FIGURE 3-6: L293D PIN DESCRIPTION ERROR! BOOKMARK NOT DEFINED.
FIGURE 3-7: ULN2003A PIN DESCRIPTIONERROR! BOOKMARK NOT
DEFINED.
FIGURE 3-8: STEPPER MOTOR CONNECTION TO THE DRIVER ERROR!
BOOKMARK NOT DEFINED.
FIGURE 3-9: ATMEGA 16 PIN DESCRIPTION ERROR! BOOKMARK NOT
DEFINED.
FIGURE 3-10: THE BLOCK DIAGRAM OF RF CIRCUIT . ERROR! BOOKMARK
NOT DEFINED.
FIGURE 3-11: 7805 VOLTAGE REGULATORERROR! BOOKMARK NOT
DEFINED.
FIGURE 3-12: LCD ERROR! BOOKMARK NOT DEFINED.

- FIGURE 3-13: PROCEDURE OF GATHERING INFORMATION...... ERROR!

 BOOKMARK NOT DEFINED.
- FIGURE 3-14: PROCEDURE TO MOVE RIGHTERROR! BOOKMARK NOT DEFINED.
- FIGURE 3-15: PROCEDURE TO MOVE LEFTERROR! BOOKMARK NOT DEFINED.
- FIGURE 3-16: THE MAIN FLOW CHART ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-1: SIMULATION OF THE ROBOT MOVEMENTERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-2: SIMULATION OF THE TEMPERATURE SENSOR ERROR!

 BOOKMARK NOT DEFINED.
- FIGURE 4-3: SIMULATION OF GAS SENSORERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-4: SIMULATION OF HUMIDITY SENSOR ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-5: VIRTUAL TERMINAL...... ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-6: THE REAL CIRCUIT DESIGN......ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-7: TEMPERATURE SENSOR CIRCUIT.....ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-8: (A) AND (B): GAS SENSOR CIRCUIT **ERROR! BOOKMARK NOT DEFINED.**
- FIGURE 4-9: STEPPER MOTOR TEST ... ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-10: ULTRASONIC SENSOR TESTERROR! BOOKMARK NOT DEFINED.

- FIGURE 4-11: DC MOTORS TEST...... ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-12: ROBOT BUILDING...... ERROR! BOOKMARK NOT DEFINED.
- FIGURE 4-13: THE FINAL CIRCUIT DESIGN IN THE TEST BOARD..... ERROR!

 BOOKMARK NOT DEFINED.
- FIGURE 4-14: THE FINAL CIRCUIT DESIGN IN SOLDERING BOARD .. ERROR!

 BOOKMARK NOT DEFINED.

List of Tables

TABLE	2-1:	COMPARISON	BETWEEN	BRUSHED	AND	BRUSH	LESS	DC
Mo	TOR	•••••	E	RROR! BOO	OKMAI	RK NOT	DEFIN	NED.
TABLE	4-1:	DERIVING GAS	CONCENT	RATION FR	ом О	UTPUT	Volt	AGE
ERROR! BOOKMARK NOT DEFINED.								
TABLE 4-2: DERIVING RH FROM FREQUENCY ERROR! BOOKMARK NOT								
DEF	INED	•						
TABLE 4-3: DERIVING RH FROM VOLTAGE OUTPUT ERROR! BOOKMARK								
NOT	r DEFI	NED.						
TABLE	4-4:	MICROCONTRO	OLLER PIN	CONNECT	ION I	N THE	CIRC	UIT:
			E	RROR! BOO	OKMAI	RK NOT	DEFIN	NED.

Abbreviations

A

AC Alternative Current

ADC Analog to Digital Converter

<u>C</u>

CCD Charge Coupled Device

CISC Complex Instruction Set Computing

 $\overline{\mathbf{D}}$

DC Direct Current

DVMT Distributed Vehicle Monitoring Test bed

<u>E</u>

E-step Expectation Step

<u>G</u>

GHz Gega Hertz

 $\overline{\mathbf{H}}$

HB Hybrid

Ī

IEEE Institute of Electrical and Electronic Engineering

IR Infrared

<u>K</u>

Kbps Kilo Bit Per Second

 $\underline{\mathbf{L}}$

LCD Liquid Crystal Display

LED Light Emitting Diodes

 $\underline{\mathbf{M}}$

MANETs Mobile Ad hoc Networks

Mbps Mega Bit per Second

MHz Mega Hertz

Msec Milli Second

MWSN Mobile Wireless Sensor Network

M-step Maximization Step

<u>P</u>

PAN Personal Area Network

PC Personal Computer

PM Permanent Magnet

PPM Part Per Million

PSD Position Sensitive Device

PUMA Programmable Universal Machine for Assembly

 \mathbf{R}

RF Radio Frequency

RH Relative Humidity

RISC Reduced Instruction Set Computing

R.U.R Rossum's Universal Robots

<u>T</u>

T Time

 $\underline{\mathbf{V}}$

VR Variable Reluctance

 $\underline{\mathbf{W}}$

WSN Wireless Sensor Network

WPANs Wireless Personal Area Networks

Chapter One

Introduction

Chapter One

Introduction

1.1Preface:

In this project a mobile robot designed to access hazardous areas that cannot be accessed by humans for the reason of collecting information through sensors.

A Mobile robot equipped with sensors is used to monitor the environment and gathered information to be capable to predict the environmental disasters before it begun and react accordingly, or just to collect information about any area that is dangerous to be accessed by human because it's hazards.

This is done by sent information about what happened in this environment to the control station by Bluetooth, Zigbee or any other transmission circuit, so the users have the ability to avoid any undesirable action.

The robot has the possibility to work independently by sense the environment and avoid any obstacles in its way without user controlled with the help of necessary navigation sensors, this self control feature added to the design make it an autonomous mobile robot.

By added the mobility feature, large space can be covered by less number of agents rather than use of more number of wireless sensors network fixed nodes to cover the same area. Chapter One Introduction

1.2Problem Statement:

In wireless sensors network fixed nodes distributed in the environment that need to be monitored. So large number of nodes must be used and this required high cost. Also sometimes environment that must be monitored with the help of wireless sensors network nodes is dangerous places that cannot be accessed by human because of any risk factors such as Chemical contamination, Toxic gas, lack of O2 or any other factor.

1.3Proposed Solution:

Design and implementation of autonomous mobile robot equipped with the necessary sensors for self navigation and information gathering. It acts as Mobile Wireless Sensors Network agent (MWSN).

1.4 Research Objective:

- 1. Simulation of mobile robot and the physical phenomenon that should be measured.
- 2. Design of an autonomous mobile agent prototype can move (forward, backward, turn left, turn right), collect information, detect and avoid objects.

1.5Methodology:

 In general all the needed Background about Wireless Sensors Network, Mobile robot and know the advantages, disadvantages and application of it. Chapter One Introduction

• Determine the problem statement, proposed solution and objectives of using the mobile agent.

- Write Literature review about Mobile Robot, Wireless Sensors Network (WSN) and the previous related works.
- Draw the block diagram of robot prototype circuit and determine the components.
- Building the necessary simulation knowledge about the microcontroller.
- Simulation of mobile agent and sensing circuit.
- Evaluation of the mobile agent system performance.
- Hardware design is integrated with the software after developing it.
- Testing the mobile agent working.
- Show the results of the mobile robot and discuss this.
- Write recommendations deduced from this project.
- Write the final report about monitoring environment using Mobile Wireless Sensors Network (MWSN).

1.6Research Outline:

- Chapter one include preface, problem statement, proposed solution, research objective and methodology.
- Chapter two includes definitions related to mobile robot,
 background, robot component, and literature review.

Chapter One Introduction

• Chapter three include block diagram, system component and flow chart.

- Chapter four include software and hardware design.
- Chapter five include conclusion and recommendation.