

بسم الله الرحمن الرحيم

وَمِنَ النَّاسِ وَالدَّوَابِةِ وَالْأَنْعَامِ مُخْتَلِهِ مُ أَلُوانُهُ كَذَلِكَ إِنَّهَا يَخْشَى اللَّهَ عَزِيزٌ غَهُورٌ مِنْ عِبَادِهِ الْعُلَمَاء إِنَّ اللَّهَ عَزِيزٌ غَهُورٌ

صدق الله العظيم

(28)فاطر

DEDICATION

- Dedication to our mothers
- Dedication to our fathers
 - With love and respects
- Dedication to our friends
- Whom we cherish their friendship
 - Dedication to our special people
 - Who mean so much to us . . .
- Dedication to all our teachers....
- In whom we believe so much

ACKNOWLEDGEMENT

We forewordall the thankful and gratitude after Allah His Grace for our fathers, mothers and brothers, that they give us the incorporeal and financial supports. And for all who ever help us on this research especially our supervisor Dr/FathElrhman Ismail Khalifa, who was the totally stone for this research.

The thanks also to all who give us any information or data about this research on mater if it was too small, and who gave us little minutes of his time and efforts from teachers to colleges, especially Teacher/Mustafa Malik.

Finally we pleasure to introduce the thankful and credited for Sudan University of Science and Technology-Collage of Engineering-School of Electronics Engineering, where we have studied, and we ask Allah to keep serve the education, science and country.

ABSTRACT

New developed cellulartechnologies or mobile communication systems usually are aimed to improve the services quality that provided to the target user. The improvement can be verified in terms of a good signal-to –interference ratio (SINR) which increases the system capacity among other performance metrics.

Interference occurs when two or more signals overlaps with each other, it consider a problem in terms of the system performance which arises in transmission quality and the system capacity.

This research studies the interference problem in LTE Advanced, as one of the challenges facing 4G systems. Smart antenna system is used as mitigation technique for this problem,in which the adaptive beam-forming algorithms cancel the interference signals by increasing the gain in a chosen direction. Therefore, it would improve the system performance. The smart antenna performance investigated by MATLAB program to simulate its operation as well as the performance improvement of service offered to the end user .

The improvement of the system performance considers the achieved result of this research. It evaluated the smart antenna performance metrics in term of SINR which improved by 150%, capacity increased by 31.5%,data rate by 128.8%, throughput by 155.8% and spectral efficiency by 129%.

المستخلص

التقنيات او انظمه الاتصالات الجديده في العاده تهدف لتحسين جوده الخدمه التي تقدم للمستخدم. التحسين يمكن ان يكون جليا على صعيد عدد من عوامل الاداء منهم زياده نسبه الاشاره المطلوبه الى اشاره التداخل بالاضافه لاشاره الضجيج و ايضا زياده في سعه النظام.

التداخل يحدث عند صدور اشارتين او اكثر من مصدر واحد او عند تقارب الاشارات في قيمه التردد المستخدم, حيث يؤدي اليالتاثير في ادائيه النظام من حيث جوده الارسال وقدره النظام الوظيفيه.

يتناول هذا البحث ظاهر هالتداخلفيتطور طويل المدى المحسنكأحدانظمهالاتصالات الجديده في الجيلالرابع . استخدمت تقنيه الهوائيات الذكيه لتقليل ظاهره التداخل , حيث تتحكم في اتجاه نمط انتشار هوائياتها بالخوار زمياتالملائمه مما يؤدي اليتحسينادائيهالنظام.

تم التحقيق من تحسن الاداء للنظام عن طريق لغه الماتلاب في شكل نتائج محاكاه, و التي اعتبترت كنتائج لهذا البحث. ايضا تم تقييم زياده في ادائيه النظام على صعيد الزياده في نسبه زياده الاشاره المطلوبه الي اشاره التداخل و الضجيج التي تحدث من قناه الاتصال نفسها تقدر بحوالي 150%, الزياده في قدره النظام تتمثل في زياده عدد المستخدمين للنظام في منطقه معينه او في زياده البيانات المرسله خلال قناه الاتصال بمقدار 31.5%, زياده معدل ارسال البيانات اي عدد البيانات في الثانيه الواحده بنسبه 128.8%, زياده جمله الخرج للنظام تبعا لزياده البيانات بنسبه 155%% و ايضا الزياده في مدى استقلاليه طيف الاتصال في النظام بمقدار 129%.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRACT IN ARABIC	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xix
	LIST OF SYMBOLS	xxi
1	INTRODUCTION	2
	1.1 Preface	2
	1.2 Problem Statement	3
	1.3 Proposed Solution	3
	1.4 Research Aims and Objectives	3
	1.5 Methodology	4
	1.6 Thesis outline	4
2	LITERATURE REVIEW	6
	2.1 Background	6
	2.1.1 feature of LTE	7

3.2.2 Least Mean Square Algorithm (LMS)	24
3.3 Smart Antenna PerformanceMetrics	27
3.3.1 Signal-to-interference-plus- noise ratio	27
(SINR)	
3.3.2 System Capacity	28
3.3.3 Data Rate of the System	28
3.3.4 System Throughput	29
3.3.5 Spectral Efficiency of theSystem	30
3.4 Simulation Results	30
4	
RESULT &DISSCATION	32
4.1 Simulation of Beam-forming Process	32
4.1.1 Direction of Arrival (DOA) Algorithm	32
4.1.3 Least Mean Square error (LMS) Algorithm	33
4.1.3.1 Weights Updating	34
4.1.3.2Error Calculation of the	35
Estimated Signals weights	
4.1.3.3 Interference Cancellation	36
4.1.3.4 Determination of the Desired User Beam	37
4.2 Simulation of Smart antenna performance	38
metrics	38
4.2.1 Signal to Interference & Noise	
Ratio(SINR)of Tow Systems	38
4.2.2 Capacity of two systems	40
4.2.3 Data rate for two systems	41
4.2.4Throughput of two systems	42
4.2.5 Spectral Efficiency of Two Systems	43

	4.3 Simulation the improvement of the smar	44
	antenna performance metrics	
	4.3.1 Improvement of Signal-to Interference - Plus-	44
	Noise Ratio (SINR) of the System	
	4.3.2System Capacity Enhancement	45
	4.3.3 Increases of the System DataRate	46
	4.3.4 Corresponding Throughput Increasing	47
	4.3.5 Spectral Efficiency Improvement	48
5	CONCLUSION and RECOMMENDATIONS	51
	5.1 conclusion	51
	5.2Recommendation	52
	Reference s	53
	Appendices (A-B)	57-68

LIST OF TABLE

TABLE NO	TITLE	PAGE
3.1	Modulation Level, Code Rate and Corresponding SINR Value	26
4.1	Compression between two Users for Different Systems	44
4.2	Compression between Two Users for Different Systems	49

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Sectorization: Three sector	13
2.2	Sectorization: Six-sector	13
3.1	Switched-beamsystem	20
3.2	Comparison of (a)switched-beam	21
	Scheme, and (b) adaptive array scheme	
3.3	SDMA System Block Diagram	22
3.4	SDMA Multi-Beam System	23
3.5	Smart antenna block diagram	24
4.1	The Direction of user 30 ° by using DOA Algorithm	33
4.2	The Direction of user 0 0 by using DOA Algorithm	33
4.3	The Estimated UpdatingWeights for Signal at(30 °)	34
4.4	The Estimated UpdatingWeights for Signal at(0 0)	35
4.5	Error Calculation of the Estimated Signal weightsat(30 °)	35
4.6	Error Calculation of the Estimated Signal weightsat (0 0)	36
4.7	LMS algorithm: narrow high fordesired user at	37
	(30 °) and cancelundesired user at (10°, 60°)	
4.8	LMS algorithm: narrow high for desired user at	37
	(0°) and cancel undesired user at (10°, 60°)	
4.9	Determination Beam-forming of the Desired User at 30 ⁰	38
4.10	Determination Beam-forming of the Desired User	38
	at 0 ⁰	
4.11	SINR Signals of two Users.(a) With Smart	39
	Antenna System and (b) Without Smart Antenna	
	System	

4.12	Capacity of two users (a) Smart Antenna System and	40
	(b) Without Smart Antenna System	
4.13	Data rate signals of two users (a) With smart antenna	41
	system and (b) Without smart antenna system	
4.14	Throughput signals of two users (a) With smart antenna	42
	system and (b) Without smart antenna system	
4.15	Spectral efficiency signals of two user (a) With smart	43
	antenna system and (b) Without smart antenna system	
4.16	Comparison of SINR of Two Users with and Without	45
	Smart Antenna System	
4.17	Comparison of Capacity of Two Users with and Without	46
	Smart Antenna System	
4.18	Comparison of Data Rate of Two Users with and	47
	Without Smart Antenna System	
4.19	Comparison of Throughput of Two Users with and	48
	Without Smart Antenna System	
4.20	Comparison of Spectral Efficiency of Two Users with	49
	and Without Smart Antenna System	

LIST OF SYMBOLS

Symbol Meaning E(k) Error (k) Reference signal Output signal Y(k)Gain of the signal h Weight W Transpose of the Matrix or Vector. Η The signal S(t) W(t) The Signal Weight

The Noise Signal

The Interference Signal

N(t)

I(t)

Abbreviation

Abbreviation Full Name

SNR Signal-to-Noise Ratio

SINR Signal-to-Interference and Noise Ratio

LTE Long-Term Evolution

DOA Direction Of Arrival

LMS least Mean Square

3GPP Third Generation Partnership Project

CDMA Code Division Multiplexing Access

WCDMA Wideband Code Division Multiplexing Access

GSM Global System for Mobile Communications

IMT International Mobile Telecommunication

4G Fourth Generation

3G Third Generation

ITU-R International Telecommunications Union Radio communication

FDMA Frequency Division Multiplexing Access

TDMA Time Division Multiplexing Access

OFDMA Orthogonal Frequency Division Multiplexing Access

MIMO Multi-Input Multi-Output

SOI Signal Of Interest

SNOIs Signal Not Of Interest

DSP Digital Signal Processing

SDMA Spatial Division Multiple Accesses

AMC Adaptive Modulation and Coding

TDD Time Division Duplex

FDD Frequency Division Duplex

LOS Line-of-Sight

CCI Co-Channel Interference

FB Fixed Beam-forming

MMDS Multichannel Multipoint Distribution Service

BWA Broadband Wireless Access

SB Switched Beam-forming

SDMA Space Division Multiple Access

AB Adaptive Beam-forming

TD Transmit Diversity

RF Radio Frequency

IF Intermediate Frequency

MUD Multi-User Detection

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	LMS & DOA Algorithm	57
В	Code of Effect of Smart Antenna on the Performance in Terms of Interference, SINR, Datrate, Capacity, Throughput	59