

بسم الله الرحمن الرحيم

قال الله تعالى:

"شهد الله أنه لا إله إلا هو و الملائكة و أولوا العلم قائما بالقسط لا إله إلاهو العزيز الحكيم "

صدق الله العظيم.

Dedication

We would like to dedicate this project

To those who gave our life its meaning

And taste

OUR FAMILIES

AERONAUTICAL DEPARTMENT.

Acknowledgement

We would like to thanks to those assist us to accomplish this Project, firstly:

Faithful project supervisors:

ENG.D.Enisar Abdel Fattah

Secondly:

ANY ONE HELPS US.

المستخلص:

يدعم المشروع دراسة عدم الاستقرار الذي يحدث عند تشغيل مدخل الهواء فوق الصوتي في الظروف غير التصميمة (حالة الطيران و حالة المحرك أثناء التشغيل) وعندما يعمل المدخل بالقرب من النظام الحرج (critical) فإن استقراره يضطرب بسبب عملية إنتقالية عابرة تحدث بسبب نقصان كمية الهواء التي يتطلبها المحرك وبسبب تتداخل الصدمات مع الطبقة المتاخمة(boundary layer) .هذه الظاهرة تحدث بسبب حالة الطيران (Mach) مع الطبقة المتاخمة (buzz) .و عندما تتجاوز كمية الهواء المخزون الكمية التي يتطلبها المحرك تدفع الصدمة العمودية (buzz) من المدخل الي الخارج.وهذه الظاهرة تحدث بسبب (حالة تشغيل المحرك) وهي المعروفة بالإختناق (surge)

للحصول علي التصميم الأمثل يتم بواسطة حساب أفضل قيمة لنسبة الضغط الركودي (pressure recovery) (total) (pressure recovery) المحرك. للحصول علي أمثل نظام يتم إستخدام عدة صدمات مائلة (N-1) ذات الشدة المتساوية مع صدمة عمودية واحدة وذلك لقليل الخسارة و يتم الحصول على أقصى قدر من (pressure (recovery). ويتم حسابه أيضاً في الظروف الخارجة عن نطاق التصميم حتى يتم معرفة أداء المحرك في هذة الظروف. كما يتضمن المشروع الطرق المكتشفة للحد من هذه الظواهر وحلها. وهذة الطرق تؤدي لتوافق كمية الهواء الداخلة مع طلب المحرك مثل open/close schedule of a bypass والمرر الهواء الجانبي second ramp angle

Abstract:

The project provides study of instability which occurs when supersonic inlet operation at off design conditions (flight condition and engine operation condition). When the inlet operate near to critical regime, the stability interrupted by transient process which occur due to reduce of mass flow required by the engine and boundary layer interaction with shock system. This phenomenon occurs due to flight condition and it is known as buzz. Also when mass flow store inside inlet exceed than mass demand by the engine, the normal shock will expelled out of inlet. This phenomenon occurs due to (engine operation condition) and it is known as surge.

For an on-design condition, the total pressure recovery is maximized according to the optimization criterion, and the dimensions of the inlet in terms of ratios to the engine face diameter are calculated. The optimization criterion is defined such that in a system of (n-1) oblique shocks and one normal shock in two dimensions, the maximum shock pressure recovery is obtained when the shocks are of equal strength. This project also provides a method to estimate the total pressure recovery for an off-design condition for the specified inlet configuration. For an off-design condition, conservative estimation of the total pressure recovery is given so that performance of the engine at the off-design condition can be estimated. Also the project includes the methods discovered to reduce and solve these phenomenons. This methods lead to match the mass flow demand of the engine, the second ramp angle is adjusted and the open/close schedule of a bypass door is determined.

List of contents:

List of contents:	No.
الآية	
Dedication	(VI)
Acknowledgement	(VI)
المستخلص	(VI)
Abstract	(VI)
List of contents	(VI)
List of tables	(VI)
List of figures	(VI)
List of samples	(VI)
Abbreviations	
Chapter one:	
1.1 Introduction	(1)
1.2 Statement of problem	(2)
1.3 Proposed solutions	(2)
1.4 Objectives	
1.5 Methodology	
Chapter two:	
2.1Description of Instability phenomena and results of previous	(4)
investigations	
2.2Examples of self-excited oscillations	(8)
2.2.1Hartman sound generator	
2.2.2 Stoolman experiment	
2.2.3 Charles Lee Dailey	
Chapter three "Intake in general":	

3.1.What is air intake	(15)
3.2 Need of air intake in an aircraft	
3.3 Air intake design requirements	
3.4 Intake configurations	(16)
3.4.1 Types	(16)
3.4.1.1 Jet Engine Intakes: Supersonic	(16)
3.4.1.1.1 Principles of diffusers	(16)
3.5 Flow conditions over wedge and cone	(19)
3.5.1 Comparison of supersonic flow over cone and wedge	(22)
3.6 Total pressure loss and static pressure increase due to	(23)
shockwave	
3.7 Intake configuration and operation	(24)
3.7.1 Normal shock diffuser	(24)
3.7.2 Oblique shock diffuser intake characteristics	(25)
3.8 Effect of boundary layer	
Chapter four "CALCULATIONS":	
4.1 The Optimization Criterion to Maximize Total Pressure	(33)
Recovery	
4.1.1 Calculation of Total Pressure Recovery [TPR]	(34)
4.1.2 Calculation of static Pressure	(35)
4.1.3 Calculation of the exit area	(35)
4.1.3 Buzz calculation(Calculation of the exit back pressure)	(36)
4.2 The inlet for Off-Design Conditions:	
4.2.1 subcritical calculation	
4.2.2 Calculation of the total pressure recovery [TPR]	(37)
Chapter five :	
5.1 Regulation and control	(40)
5.2 Control system with air bleed flaps	(43)
Chapter Six:	
6.1 Result and discussion	(47)
6.2Conclusion	(50)

Study of Buzz and surge for supersonic air intake	2014

6.3 Recommendation	(52)
6.4Reference	(53)
6.5 Appendix	(56)

List of table:

Tables	Names	No.
Table (6.1)	Static pressure values.	(47)
Table (6.2)	Back pressure when normal shock at exit.	(48)
Table (6.3)	Distribution pressure at variable Mach number.	(48)
Table (6.4)	Results of off-design condition TPR.	(49)
Table (6.7)	Conversion of unit	(56)
Tables(6.8)	Normal shocks in perfect gases (γ =1.4)	(57)
Tables (6.9)	isentropic shocks in perfect gases (γ =1.4)	(62)

List of figure:

Figures	Name of figure	No.
Fig.(2.1)	Scale drawing of Oswatitsch's diffuser.	13
Fig (2.2)	Oswatitsch's diffuser performance illustrating	13
	transition to unstable flow, M=2.9	
Fig (2.3)	Characteristics of Hartman sound generator.	14
Fig (3.1)	Principle of diffuser.	18
Fig (3.2)	Flow conditions over wedge.	20
Fig (3.3)	Supersonic flow over wedge.	21
Fig (3.4)	Comparison of supersonic flow over cone and	23
	wedge.	
Fig (3.5)	Total pressure loss and static pressure increase doe	23
	to shock wave.	
Fig (3.6)	Operation of normal shock diffuser.	25
Fig (3.7)	Characteristics of oblique-shock diffuser.	27
Fig (3.8)	External compression inlet performance	30
	characteristics.	
Fig (3.9)	Condition leading to inlet buzz.	30
Fig(3.10)	Characteristics of Hartman sound generator.	31
Fig(3.11)	interaction of normal shock wave and boundry	32
	layer.	
Fig (4.1)	Design condition.	33
Fig (4.2)	Multi shock compression for Oswatitsch	34
	optimization.	
Fig (4.3)	State of normal shock at the exit	36
Fig (4.4)	Subcritical inlet operation	38

Study of Buzz and surge for supersonic air intake

2014

Fig (4.5)	Effect of engine operation at constant mach and	38
	decreasing in engine RPM.	
Fig (5.1)	Variable shape inlet.	43
Fig (5.2)	Fixed air inlet with by-pass of the excess air.	43
Fig (5.3)	Automatic control system for supersonic intakes	45
	based on the air bleed flaps' opening.	
Fig (5.4)	Systems ramp response	46

List of Samples:

Sample	Definition
M_{in}	Strength of the shock
θ_{i}	Angle of shock wave
δ_{i}	Deflection angle or half wedge angle
a	Speed of sound
P_{oi}	Stagnation pressure
A^*	Critical area(throat area)
A_{e}	Exit area of diffuser
P _e	Back pressure
M_{e}	Exit Mach number
X	Up stream of normal shock
У	Downstream of normal shock
M_{dc}	Mach number at design condition
T_{oi}	Stagnation temperature
T_i	Static temperature
P_i	Static pressure
K	Specific heat constant
R	Specific gas constant
i	Number of shock
V	Flight speed
• m	Mass flow rate
ρ	Density
0	Stagnation state

List of abbreviations:

TPR	Total pressure recovery
CFD	Computational fluid dynamics
DC	Design condition