

Dedication

We dedicated our research to our parents.

In addition to all my teachers who help us in our study and finally all students.

Acknowledgement

First and foremost, thank God Almighty, then we would like to express our great appreciation to Dr.AbdElraheemSa'ad for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

Lastly and not the least, Without forgetting the great help from the wind tunnel teacher Abd Alhakam, workshop teachers, department of mechanical engineering, al fujira factory, saria factory, al safat and the military manufacturing family. We are thankful for all of them and appreciated the great help for us.

المستخلص

الجناح المرن هو ذلك الجناح الذي يصنع من المواد المركبة أو الذكية التي تغير من شكلها إعتمادا على الوضع المطلوب لتحسين الخصائص ديناميكا الهواء و التحكم بالطائرة.

تحسين خصائص الجناح الإيروديناميكية (زيادة الرفع, تقليل العزوم, تأخير إنفصال الهواء عن سطح الجناح و تقليل إستهلاك الوقود) و ذلك بتغير شكل مقطع الجناح.

هذا المشروع تطوير لبحث تصميم الجناح المرن و ذلك عن طريق إختبار خصائص المواد المركبة أو الذكية عن طريق إختبارات النفق الهوائي. و أيضا تطوريه عن طريق دراسة تأثير الجناح المرن في أداء الطائرة و مقارنة النتائج بالجناح التقليدي.

Abstract

The Flexible Wing is that wing which made by smart materials can be changed its shape depending on the situation in order to optimize aerodynamic efficiencies and aircraft control. Improve the wing aerodynamic characteristics (increase lift, decrease the parasite drag, decrease pitching moment, delay flow separation and decrease fuel consumption) by various the wing camber.

This project is development to the flexible wing design research, and it's divided into two parts, first part testing the properties of the materials which used in the flexible wing design in the wind tunnel, second part study the effect of flexible wing on the performance of the aircraft and comparing it with the rigid one.

Contents

The contents	
الآية الكريمة	
Dedication	
Acknowledgement	
المستخلص	
Abstract	
Chapter one: INTRODUCTION	
1.1 Introduction	2
1.2 Problem statement	4
1.3 Methodology	4
1.4 Project objectives	4
1.5 Research outlines	5
Chapter two: LITERATUE REVIEW	
2.1 Literature Review	7
2.2 Flexible wing aerodynamics at low renolds number	9
2.3 Design and qualification concepts for flexible wind tunnel wind models	10
2.4 Flexible Wing Design	11
Chapter three :FLEXIBLE WING MATERIAL	
3.1 Introduction	13
3.2 The Required Properties of the Flexible Surface Materials	13
3.3 Carbon fibre	14
3.3.1 Carbon Fibre Properties	15
3.4 Glass fibre	23
3.4.1 Advantages	23
3.4.2 Disadvantages	23
3.5 Aluminium	24
3.5.1 Background	24
3.5.2 List of aerospace aluminium alloys	25
3.5.3 Advantages of Aluminium	26
3.5.4 Disadvantages of Aluminium	27
Chapter four : THE EXPREMENTAL WORK	
4.1 Introduction	29
4.2 THE EXPREMENTAL WORK	29
4.2.1 The wind tunnel specification	29

4.2.2	Method of the work	30
4.2.3	Model (2) experimental work problems	31
4.2.4	Treatment (the requirement to solve the problems)	31
4.3	FABRICATION	33
4.3.1	Selecting the airfoil type	33
4.3.2	Manufacturing the models	33
4.3.2.1	The aluminium model fabrication	33
4.3.2.2	The glass fibre model fabrication	34
4.3.2.3	The carbon fibre model fabrication:	37
Chapte	r five: CALCULATION	41
5.1	Steady level flight models	42
5.1.1	Free body diagrams	42
5.1.2	Aerodynamics	44
5.2.	Thrust Available and Power Available	44
5.2.1	Thrust available	44
5.2.2	Power required	45
5.2.3	Steady climbing or descending flight models	45
5.3	Aircraft Range and Endurance	46
5.3.1	Fuel consumption	46
5.3.2	Range of Propeller-Driven airplanes	46
5.3.3	Endurance of Propeller-Driven airplanes	47
5.4	Takeoff and landing performance	48
5.4.1	Takeoff performance	48
5.4.2	Landing performance	49
5.5	Aircraft Data and factors	52
5.6	Calculations for the rigid	52
5.6.1	Aerodynamic relation associated with $\left(\frac{L}{D}\right)_{max}$	52
5.6.2	Power required	53
5.6.3	Rate of climb at θ_{max}	53
5.6.4	Gliding	54
5.6.5	Time to climb	54
5.6.6	Range & Endurance	55
5.7	Calculations for flexible	55
5.7.1	Aerodynamic relation associated with $(L/D)_{max}$	55

5.7.2	Power required	56
5.7.3	Rate of climb at $ heta_{max}$	56
5.7.4	Gliding	56
5.7.5	Time to climb	56
5.7.6	Range & Endurance	57
Chapter six: RESULTS AND DISCUSSIONS		
6.1	Results	59
6.1.2	Lift to drag coefficient results	59
6.1.2.1	Aluminium model	60
6.1.2.2	Glass fibre model	61
6.1.2.3	Carbon fibre model	62
6.1.2.4	Wind tunnel model	63
6.2	Discussion	64
6.3	Performance result and discussion	66
6.3.1	Rigid wing performance results	66
6.3.2	Flexible wing performance results	69
6.3.3	Performance results discussion	72
Chapter seven: CONCULSION AND RECOMONDATIONS		73
7.1	Conclusions	74
7.2	Recommendations	74
The contents		
Append	ix	75
List of tables		76
List of figures		77
List of symbols		78
Abbreviations		79
References		80