الآية

بياليات المحالية

﴿ وَاضْرِبْ لَهُمْ مَثَلَ الْحَيَاةِ الدُّنْيَا كَاءٍ أَنْزَلْنَاهُ مِنَ السَّمَاءِ فَاخْتَلَطَ بِهِ نَبَاتُ الْأَرْضِ فَأَصْبَحَ هَشِيمًا تَذْرُوهُ الرِّيَاحُ وَكَانَ اللَّهُ عَلَىٰ كُلِّ شَيْءٍ مُقْتَدِرًا ﴾ اللّهُ عَلَىٰ كُلِّ شَيْءٍ مُقْتَدِرًا ﴾

الكهف الآية ﴿29﴾

الإهداء

نهدي العمل لآبائنا و أمحاتنا

للأستاذة بقسم هندسة الطيران

إلي كل من علمنا حرفاً

شكر و تقدير

أولاً نشكر ألا عز و جل الذي سخر لنا هذا العمل بفضله ومنه ، و أيضا الشكر موصول للأستاذ الفاتح مكي معروف الذي أشرف على هذا العمل بدعمه و نصائحه المتواصلة وعلى معاملته الكريمة ، و أيضا الشكر إلي كل من ساهم برأيه في إخراج هذا العمل من زملائنا بالدفعة ١٣ طيران ، وكل الشكر مع خالص الحب لأسرنا الكريمة و هي ترعى و تدعم بصبر بالغ ، سائلين الله عز و جل أن يجزيهم جميعهم خيراً و يجعل ذلك في ميزان حسناتهم والله والموفق

List of contents:

- الآية •
- الإهداء •
- الشكر و التقدير •
- List of contents
- List of figures
- List of Tables
- List of Symbols
- Abbreviations
- Chapter one: Introduction
- Chapter Two: literture review
- Chapter three: The silent aircraft concept
- Chapter four: Review of the technologies for silent propulsion system
- Chapter five: Technologies optimisation (silent takeoff optimisatio)
- Chapter six : Conculsion and recommendation

List of figures:

List of figures	Page No.
Chapter One: Introduction	
1.1 Background	1
1.2 Objectives of the project	2
1.3 Methodology	3
1.4 Project outlines	4
Chapter Two: Literature review	
2.1 Aviation and the Environment`	5
2.2 Basics of Sound	6
2.3 Noise Effects	7

2.4 Aircraft noise sources	7
2.5 histories in jet noise reduction work	12
Chapter Three : Silent Aircraft	
3.1 Silent Aircraft Concept	13
3.1.1 Aerodynamically smooth lifting surface	13
3.1.2 Hidden Trailing Edge	14
3.1.3 Ultra-high by-pass ratio turbofan engines	14
3.1.4 Distributed propulsion system Embedded In the Airframe	15
3.1.5 Power Assisted lift	15
3.1.6 Silent drag – wind milling Engine air-brake	16
3.1.7 Silent spoiler	16

Chapter four : Review of the technologies for silent	
propulsion system	
4.1 The Concept of Ultra high bypass ratio engine with	17
variable area nozzle and noise reduction	
4.1.1 Introduction	18
4.1.2 Influence of fan pressure ratio and bypass ratio on	18
jet noise emissions and cycle performance	
4.1.3 Cycle limits and trends in jet noise emissions and	19
cycle performance for separate flow exhaust nozzle	
4.1.4 Cycle limits and trends in jet noise emissions and	20
cycle performance for mixed flow exhaust nozzles	
4.1.5 Influence of engine technology level on noise	21
reduction potential	
4.1.6 Variable area nozzle	24
4.1.7 Nozzle desgin	24
4.1.8 Variable area nozzle performance	25
4.1.9 Conclusion	27

4.2.1 Distributed propulsion system with high aspect ratio	28
nozzle: concepts	
4.2.2 Introduction	29
4.2.3 Embedded propulsion system layout	29
404E 1 1	20
4.2.4 Embodiment of ultra high bypass ratio engines in a	30
blended wing body Airframe	
4.2.6 Multiple small engines	33
4.2.7 Multiple fans driven by a common core engine	33
4.2.8 Evaluation of multiple fan \ engine propulsion	35
system	
4.2.9 Noise signature of multiple fans	37
4.2.10 Conclusion	37
4.3 High Aspect ratio nozzle	37
4.3.1 Nozzle performance	39
4.3.2 High aspect ratio nozzle and noise reduction	40

Chapter Five: Technologies optimization (Cases study)	
5.1 Introduction	42
5.2 Jet noise	42
5.3 Case study	45
5.3.1 Influence of fan pressure ratio and bypass ratio on jet velocity and jet noise emissions	45
5.3.2 Conclusion	50
5.4 Case study	51
5.4.1 Influence of high aspect ratio nozzle on jet noise emissions	51
5.4.2 Conclusion	56
Chapter six: Conclusion and recommendations	
6.1 Conclusion	57
6.2 Suggestions and recommendations	58

List of Tables:

	List of tables	Page No.
Table (4.1)	Cycle Parameters of the Trent 500 engine	20
	and advanced engine technology (for	
	baseline blended -wing-body suggested in	
	lie beck et al. (1996)	
Table (4.2)	Cycle Configuration leading to jet noise	23
	reduction 30 EPNL (dB)	
Table(4.3)	the total area requirement for ultra high	31
	bypass ratio cycle and airframe dimensions	
	at the corresponding location.	
Table (4.4)	Comparison of propulsion system	35
	configurations A, B and D 14.	
Table (4.5)	high aspect ratio nozzle performance	39
Table (4.6)		41
	configurations to enable a functionally-	
	silent aircraft	

Table (5.1)	Table (5.1) Cycle Parameters of the Trent 500 engine	46
Table (5.2)	The effect of fan pressure ratio and jet velocity on jet noise emissions	48
Table (5.3)	The effect of jet velocity on jet noise emissions from high aspect ratio nozzle	53
Table (5.4)	The effect of the jet area and the jet temperature on jet noise emissions from high aspect ratio nozzle	54

List of symbols:

Symbol	Quantity
OPR	Overall pressure ratio
BPR	Bypass ratio
ST	Specific thrust
ἡfan	Fan polytrophic efficiency
ἡ LPC	Low-pressure compressor efficiency
ήНРС	High- pressure compressor efficiency
ήНРТ	High-pressure turbine polytropic efficiency
ἡ LPT	low- pressure turbine polytropic efficiency
Tt4	Turbine inlet temperature
па	Inlet pressure recovery
ПЬ	Combustor pressure ratio
Ппс	Core nozzle pressure ratio
Ппь	Bypass nozzle pressure ratio
FPR	Fan pressure ratio
FPR	Fan pressure ratio

(Arec)	The total rectangular area occupied by the fans
Df	Fan diameter
Nf	Fan numbers
A1	Propulsion system inlet
A2	Fan inlet
Amix	Mixer nozzle inlet
ω2 max	Maximum span wise extent
CD	Discharge coefficient
Cfg	Gross Thrust coefficient
C	Speed of sound
D	Diameter (m2)
Vj	Jet speed [m/s]
W	Acoustic power [w]
ρ	Density [$Kg m^{-3}$]

<i>m</i> ·	Mass flow rate [$Kg s^{-1}$]
A	Jet area [m2]
Н	Polytropic efficiency[9]
γ	Ratio of specific thrust
Т	Temperature [K]
R	Gas constant [J Kg K]
γ	Ratio of specific thrust
Vo	Flight speed [m/s]
M	Mach number

Abbreviations:

ENPL: Effective perceived noise level

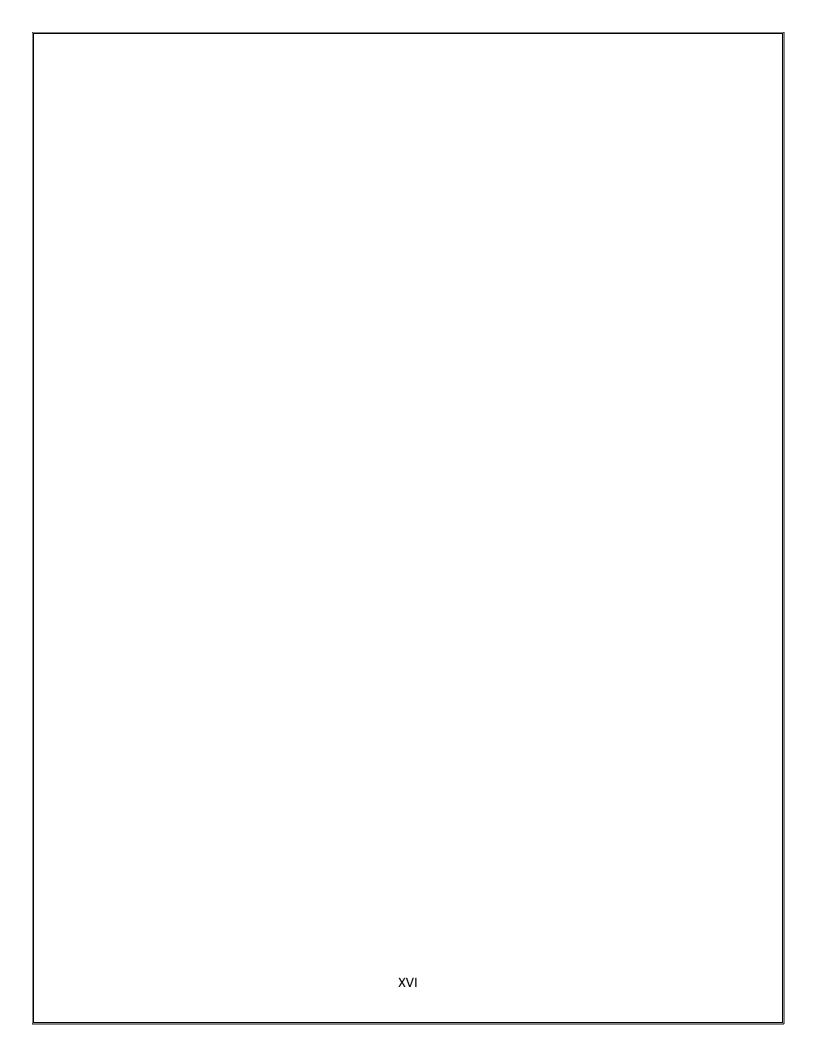
BWB: Blended wing body

ST : Specific thrust

TSFC: Thrust specific fuel consumption

VAN : Variable area nozzle

Abstract


noise emitted by commercial aircraft has been one of the most critical environmental issue, such as large number of people effected by aviation noise. The International body ICAO sets the common rules for the level of noise & engine emission through Annex 16 to the Chicago Convention 1944.

Since the Most of aircraft noise is emitted by propulsion system, the major objective of this project is to review, study and optimisation of the recently techniques of design, that can achieve the concept of silent propulsion system (30 dB noise reduction).

Ultra high bypass ratio engines with the influence of fan pressure ratio on engine noise emission, in addition to the concept of distributed propulsion system with high aspect ratio nozzle are two basic branches of this project.

A300-600 powered by trent 500 was taken as case study for optimization the effet of fan pressure ratio on jet velocity as well as on jet noise emissions under normal takeoff flight conditions. Another case study was carried out for optimization the Influence of high aspect ratio nozzle on jet noise emissions.

The fan pressure ratio was adjusted, and the optimum jet area was estimiated for (30 EPNL dB) reduction which can achieve the concept for silent propulsion system.

