بِسهِ اللهِ الرَّحمَنِ الرَّحِيم

(وَآيَةٌ آلَهُو اللَّذِلُ نَسْلَخُ هِنْهُ النَّهَارَ وَإِلَا هُوْ اللَّهُونَ (37) وَالشَّمْسُ تَجْرِي لِمُسْتَقَرِّ لَهَا حَإِلَ تَعْجِيرُ الْعَالِمِ (38) وَالْقِهَرَ وَحَرْزَالُهُ هَذَارِلَ مَتَّى عَاحَ كَالْعُرْدِرِ الْعَلِيهِ (38) وَالْقِهَرَ وَحَرْزَالُهُ هَذَارِلَ مَتَّى عَاحَ كَالْعُرْدُونِ الْقَحْدِيهِ (39) لَا الشَّمْسُ يَنْبَغِي لَهَا أَنْ تُحْرِكَ كَالْعُرْدُونِ الْقَحْدِيهِ (39) لَا الشَّمْسُ يَنْبَغِي لَهَا أَنْ تُحْرِكَ الشَّمْرِ وَكُلُّ فِي فَلَكِ يَسْهَدُونَ الْقِهَرَ وَلَا اللَّذِلُ سَارِقُ النَّهَارِ وَكُلُّ فِي فَلَكِ يَسْهَدُونَ الْقِهَرَ وَلَا اللَّهُ اللَّذِلُ سَارِقُ النَّهَارِ وَكُلُّ فِي فَلَكِ يَسْهَدُونَ (40))

صَدَقَ اللَّهُ العظيم . سورة يس الآية ٣٧-٤٠ الآية

Dedication

To our Parents

To our Department

To our Friends

And others

Acknowledgement

We are very thankful to all who contributed in this work, our best thanks to our teacher DR.

Osman Mohammed Osman who was very generous in assisting us with the best advices.

Thanks are extended to all the staff of aeronautical Engineering Department for their kind help and invaluable advice.

Abstract

A PV voltage regulator for solar application is proposed to boost and regulate the voltage to charge an aircraft 12V/0.43A battery. The proposed regulator is designed using a boost converter and PWM controlled by a PI controller.

The designed system is modelled and simulated using MATLAB and PLECS software programmes, and the results prove that the proposed system for the solar regulator is working as it expected.

التجريد

تم تصميم منظم لفولتية الخلية الضوئية لتطبيقات الطاقة الشمسية يقوم بتدعيم وتنظيم الفولتية وذلك لشحن يطارية طائرة ١٢ فولت / ٠,٤٣ امبير. صمم المنظم باستخدام محول مدعم للفولتية ومولد نبضات (PWM) ومتحكم تكامل نسبي (PI Controller).

تمت محاكاة نموزج للنظام المصمم باستخدام برنامج (MATLAB) وبرنامج (PLECS) وبرنامج (PLECS) والنتائج المستخلصة اثبتت أن النظام المصمم يعمل كما هو متوقع.

Table of contents

Subject	Page
الآية	I
Dedication	
Acknowledgment	III
Abstract	IV
Table of contents	VI
Table of figures	VIII
Table of symbols	X
Abbreviations	XII
CHAPTER ONE: Introduction	
1.1 Preface	2
1.2 Statement of problem	3
1.3 Proposed solution	3
1.4 Objectives	3
1.5 Methodology	4
1.6 Research out lines	4
1.7 Rationale	
CHAPTER TWO: Basic theory of photovoltaic cell	
2.1 Photovoltaic system	9
2.2 History of photovoltaic	9
2.3 Conversion efficiency	10
2.4 Photovoltaic Effect	10
2.5 Photovoltaic materials	10
2.6 An atomic description of silicon	
2.7 The effect of light on silicon	11
2.8 Photovoltaic arrangement	12
2.8.1 Photovoltaic cell	12
2.8.2 Photovoltaic modules	12
2.8.3 Photovoltaic array	13
2.9 Working of PV cell	14
2.10 Characteristics of a PV cell	15
2.11 Single diode model	

CHAPTER THREE: Buck and Boost converters		
3.1 DC-DC converters		
3.2 Buck converter		
3.2.1 Analysis for closed switch state	21	
3.2.2 Analysis for opened switch state	23	
3.2.3 Output voltage ripple	25	
3.3 Boost converter		
3.3.1 Analysis for closed switch state	28	
3.3.2 Analysis for opened switch state		
3.3.3 Output voltage ripple		
CHAPTER FOUR: Design of solar energy voltage regulator		
4.1 Proposed system	35	
4.2 PV panel	35	
4.3 Boost converter	39	
4.4 Pulse Width Modulation		
4.5 Proportional-Integral (PI) Control		
CHAPTER FIVE: Simulation		
5.1 MATLAB Simulink	46	
5.2 PLECS Simulink		
CHAPTER SIX: Conclusion and recommendation	ns	
6.1 Conclusion	55	
6.2 recommendation		
Reference	57	

Table of figures

Figure Number	rigule Name	
2-1	Crystal lattice	11
2-2	Basic PV cell structure	12
2-3	Photovoltaic arrangement	13
2-4	Working of PV cell	14
2-5	Characteristics of a PV cell	15
2-4	Single diode model	16
3-1	Buck converter circuit	20
3-2	Buck converter equivalent circuit for closed switch	21
3-3	Buck converter wave forms	22
3-4	Buck converter equivalent circuit for opened switch	23
3-5	Buck converter wave forms	26
3-6	Boost converter circuit	27
3-7	Boost converter equivalent circuit for closed switch	28
3-8	Boost converter equivalent circuit for opened switch	29
3-9	Boost converter wave forms	30
4-1	Block diagram of proposed system	35
4-2	PV cell connection	36
4-3	Module connection	37
4-4	Simulink circuit for solar installation system	37
4-5	Output voltage of PV panel at $1000_{m/m^2}$	38
4-6	Output Voltage of PV panel at 500 ^w / _{m²}	38
4-7	Boost converter components	39
4-8	Boost Converter Open Loop System Circuit	42
4-9	Open loop output voltage at $1000_{m/m^2}$	43
4-10	Open loop output voltage at $500^{w}/_{m^2}$	43
4-11	Proportional integral (PI) controller block diagram	44
5-1	Closed loop system circuit	46
5-2	Driving pulses	47
5-3	Voltage across the switch	47

5-4	Input voltage at $750^{w}/_{m^2}$	48
5-5	Output voltage at $750^{w}/_{m^2}$	48
5-6	Input voltage at $500^{w}/_{m^2}$	49
5-7	Output voltage at 500w/m²	49
5-8	The input voltage at $350^w/_{m^2}$	49
5-9	The output voltage at $350_{m/m^2}$	50
5-10	Input voltage at $100^{w}/_{m^2}$	50
5-11	Output voltage at $100^{w}/_{m^2}$	50
5-12	PLECS closed loop system circuit	51
5-13	Input voltage of closed loop system	52
5-14	Output voltage from closed loop system at 4.5V	52

Table of symbols

Symbols	Description
I_{mpp}	Maximum power point current
V_{mpp}	Maximum power point voltage
I_{ph}	Photovoltaic current
$I_{ph,n}$	Light-generated current at nominal condition
K_i	Current temperature co-efficient
G	Actual sun irradiation
G_n	Nominal sun irradiation
ΔT	Difference between actual temperature and nominal temperature
I_0	Diode saturation current
R_{se} & R_{pa}	Due to the presence of internal resistances
а	Diode idealistic factor
V_t	Junction thermal voltage
K	Boltzmann constant = $1.3806503 \times J/K$
Q	Electron charge = 1.607 C
D	Duty Ratio
T	Switching time
I_l	Inductor current
f_s	Switching frequency of the boost
ΔI_l	Estimated inductor ripple current
C_{min}	Minimum output capacitance
Iout	Output current
I_{max}	Maximum current
I_{min}	Minimum current
V_s	Input voltage
V_l	Inductor voltage
V_0	Output voltage
I_D	Diode current
R	Resistance
С	Capacitor
L	Inductor
V	Voltage
A	Ampere
Н	Hennery

H_z	Hertz
w	Watt
m	Meter
$K_p \& K_i$	The tuning knobs
μ	10^{-6}
Δ	Delta
M	10^{-3}
K	Kelvin
Ω	Ohm
S	Second
J	Joule

Abbreviations

Abbreviation	Description
PV	Photovoltaic
MPP	Maximum power point
Max	Maximum
Min	Minimum
DC	Direct current
ESR	Equivalent series resistance
PI	Proportional integral
PWM	Pulse width modulation
MATLAB	Matrix laboratory
PLECS	Piecewise Linear Electrical Circuit Simulation