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  آیة 
  

 بسم االله الرحمن الرحیم

 

قِ السَّمواتِ { الَّذین * والأرضِ واختلافِ اللَّیلِ والنَّهارِ لآیاتٍ لأولي الألباب  إنَّ في خلْ

قِ السَّـمواتِ والأرضِ ربَّـنـا مـا  َ في خلْ نوبهم ویتفَكَّرون َ االله قیاماً وقعوداً وعلى جُ كُرون ذْ َ ی

ا عذابَ النَّار َ ن قْت هذا باطلاً سـبحانَك فَقِ  }خـلَ
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ABSTRACT 

 

This thesis presents a neuro-fuzzy controller design for speed control of Direct 

Current (DC) motor. The thesis scope includes the simulations and modeling of 

DC motor, Fuzzy Logic Controller (FLC), neuro fuzzy controller and conventional 

Proportional-Integral-Derivative (PID) controller as benchmark to the performance 

of fuzzy system. The most commonly used controller for the speed control of  DC 

motor is the conventional  PID controller. Fuzzy logic controller and neuro-fuzzy 

control are proposed in this study. The performances of the two controllers are 

compared with PID controller performance. Classical control theory is based on 

the mathematical models that describe the physical plant under consideration.  

In this thesis, neural networks are used in to solve the problem of tuning a fuzzy 

logic controller. The neuro fuzzy controller uses neural network learning 

techniques to tune membership functions. Comparison between the PID output, 

FLC output and the neuro fuzzy output was done on the basis of the simulation 

result obtained by MATLAB/SIMULINK. The model Performance of     neuro-

fuzzy controller is better compared to FLC and PID controller. 

 

 

 

 

 



 مستخلص

. تیار مستمر محرك سرعة للتحكم في غامض عصبي تحكمم تصمیم لدراسةا ھذه تقدم

تم . محركعمل محاكاة لأداء الو النموذج الریاضي لمحرك تیار مستمریشمل الدراسة  محتوي

بالمتحكم التناسبي ومتحكم تقلیدي یعرف  تطبیق نوعین من انواع التحكم وھي المتحكم الغامض

التناسبي ویعتبر المتحكم . استخدمت المتحكمات كمقیاس لأداء المحرك. التكاملي التفاضلي

ً للتحكم في سرعة محركات التیار المستمر التكاملي التفاضلي الفكرة الاساسیة . الاكثر استخداما

 و التناسبي التكاملي التفاضليمع المتحكم  العصبي الغامض تحكملھذه الدراسة ھي مقارنة الم

الشبكات العصبیة كطریقة جدیدة لحل  تعلم تقنیاتي ھذه الدراسة تم استخدام ف. المتحكم الغامض

انواع المتحكمات تم عمل محاكاة لأداء النظام مع  .مشكلة دالة العضویة في التحكم الغامض

العصبي  تحكمالم أداء  أن وجدو. MATLAB/SIMULINKباستخدام برنامج  الثلاث

 . والمتحكم الغامض یديالمتحكم التقل أداء من أفضل  الغامض
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CHAPTER ONE 

INTRODUCTION 

1.1 General Overview 

Accurate control is critical to every process that leads to various types of 

controllers which are being widely used in process industries. Tuning methods for 

these controllers are very important for process industries. DC motor has been 

selected because it is widely used in industrial applications, robot manipulators and 

home appliances where speed and position control are required. The DC motors 

can come in many shapes and sizes, makes the development of DC motor 

application quite easy and flexible. It is also has high reliabilities, flexibilities and 

low cost [1]. To overcome these difficulties, there are three basic approaches to 

intelligent control: knowledge based expert systems, fuzzy logic, and neural 

networks. All three approaches are interesting and very promising areas of research 

and development [2].  

Classic control has proven for a long time to be good enough to handle control 

tasks on system control; however its implementation relies on an exact 

mathematical model of the plan to be controlled and not simple mathematical 

operations. Intelligent, self-learning or self-organizing controls using expert 

systems, artificial intelligence, fuzzy logic, neural networks, hybrid networks,… 

etc have been recently recognized as the important tools to improve the 

performance of the systems in the industrial sectors. Combination of this intelligent 

controls with the adaptiveness appears today as the most promising research area 

in the practical implementation and control of electrical drives.  



1.2 Problem Statement 

All control systems suffer from problems related to undesirable overshoot, longer 

settling times and vibrations and stability while going from one state to another 

state. Real world systems are nonlinear, accurate modeling is difficult, costly and 

even impossible in most cases conventional PID controllers generally do not work 

well for non-linear systems. Therefore, more advanced control techniques need to 

be used which will minimize the noise effects. 

Design of a fuzzy logic controller is accompanied with certain problems regarding 

design of membership functions (type and number of membership functions, their 

shape and range, etc.), and choosing appropriate fuzzy rules. Moreover, developing 

a rule base is one of the most time-consuming parts of designing a fuzzy logic 

controller. Usually it is very difficult to transform human knowledge and 

experience into a rule base of fuzzy logic controller. Frequently, designing a fuzzy 

logic controller requires a number of trial and error iterations, and even then, it is 

very difficult to ensure that the designed controller is an optimal one. Hence there 

is a need for developing efficient methods to tune membership functions, i.e. to 

obtain optimal shapes, ranges and number of membership functions, etc. and to 

obtain optimal rule base. Neural networks do not produce an explicit model even 

though new cases can be fed into them and new results obtained. Neural nets may 

not provide the most cost effective solution neural net implementation is typically 

more costly than other technologies, in particular fuzzy logic. The combination of 

neural networks and fuzzy logic controller has received attention. The idea is to 

lose the disadvantages of the two and give the advantages of both. NNs bring into 

this union a model of the system based on membership functions and rule base. 

 



1.3 Objectives 

The main aims of this study are: 

 To optimize fuzzy logic controller parameters via neural network and use the 

neuro-fuzzy scheme to design controller for a Permanent Magnet Direct Current 

(PMDC) motor. 

 To present special neural network architecture that can be converted to fuzzy 

logic controller.  

 To design a neuro-fuzzy controller able to precisely learn the control relation 

between input-output training data generated by the learning algorithm. 

 To perform a design simulation of neuro-fuzzy logic controller done by using 

MATLAB/SIMULINK. 

 To simulate speed control of DC motor using conventional PID controller as a 

comparison for fuzzy logic controller and neuro-fuzzy controller in the same range.  

1.4 Methodology 

In this study a Back Propagation (BP) algorithm is used to learn the neural 

network. The BP algorithm learns the weights for a multilayer network, given a 

network with a fixed set of units and interconnections. The type of fuzzy inference 

systems that can be implemented in the fuzzy logic toolbox: Mamdani-types. This 

type of inference systems vary somewhat in the way output are determined. The 

mamdani-style fuzzy inference process is performed in four steps:  

 Fuzzification of the input variable. 

 Rule evaluation (inference). 

 Aggregation of the rule outputs (composition). 

 Defuzzification. 

The task is to design and display the simulation of the neuro-fuzzy controller and 

the result of the simulation will be display by using rule viewer and surface viewer 



which are parts of the Graphical User Interface (GUI) tools in fuzzy logic toolbox 

and neural network toolbox packages in MATLAB TOOLBOX programming. 

1.5 Thesis Outline 
The thesis organisms consist of five chapters: 

Chapter one presents a general overview, problem statement, thesis objective and 

Methodology. 

Chapter two contains all the literature review from the previous study related to the 

objectives of the study. Chapter two also concerns with general introduction of the 

main ideas of DC motor control and general ideas, modeling, PID controller, fuzzy 

logic controller, neural network controller and neuro-fuzzy controller.  

Chapter three presents the overall design, mathematical model, SIMULINK model 

and methods to apply in the study. The main methodology that been stressed out 

related speed control of PMDC motor using PID controller , fuzzy logic controller 

and neuro-fuzzy controller, also has been explained in chapter three. 

Chapter four consists of expected outcomes that been stated based on the 

objectives of the study. It shows that by using neuro-fuzzy controller the speed 

controller of DC motor can be simulated and the discussion that achieved in the 

study.  

The last chapter handles the conclusion and recommendations for future studies.  
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CHAPTER TWO 

THEORETICAL BACKGTOUND AND 

LITERATURE REVIEW  

2.1 Introduction 
This chapter highlights the literature cited on the DC motors, PID controller, fuzzy 

logic controller, neural network controller and neuro fuzzy controller. Because of 

their high reliabilities, flexibilities and low costs, DC motors are widely used in 

industrial applications, electric trains, robot manipulators and home appliances 

where speed and position control of motor are required. PID controllers are 

commonly used for motor control applications because of their simple structures 

and intuitionally comprehensible control algorithms. Fuzzy set theory (Zadeh, 

1965) which led to a new control method called fuzzy control which is able to cope 

with system uncertainties.  

The mathematical model of a DC motor is used to obtain a transfer function 

between rotor shaft speed and applied armature voltage. However, there is no 

systematic method for designing and tuning the fuzzy logic controller and one has 

to design using some trial and error using the IF, ELSE, THEN rules. Furthermore, 

an optimal fuzzy logic controller cannot be achieved by trial-and-error. These 

drawbacks have limited the application of fuzzy logic control. Some efforts have 

been made to solve these problems and simplify the task of tuning parameters and 

developing rules for the controller [3-4]. These approaches mainly use adaptation 

or learning techniques drawn from artificial intelligence or neural network theories. 

This logic combined with neural networks yields very significant results. The 

learning and identification of fuzzy logic systems need to adopt techniques from 



other areas, such as statistics, system identification. Since neural networks can 

learn, it is natural to merge these two techniques. This merged technique of the 

learning power of the neural networks with the knowledge representation of fuzzy 

logic has created a new hybrid technique, called as the term ‘neuro-fuzzy 

networks’[5]. This model is then built in MATLAB/SIMULINK. Then design and 

tuning of PID controllers, fuzzy logic controller and neuro-fuzzy controller are 

reviewed in SIMULINK with the proposed design procedure. 

2.2 DC Motor  

DC motors are widely used in many applications of daily life. They are found them 

everywhere, from house appliances to our vehicles, desktops and laptops, and 

industrial applications such as production lines, remote control airplanes, automatic 

navigation systems and many other applications [1]. DC motors are well known for 

their torque-speed characteristics, and their wide operation voltage and current 

range. DC motors can be specified into different types: permanent magnet motors, 

shunt motors, series motors and compound motors. For these DC motor types, each 

one of them has different speed-torque characteristics and different categories of 

motors. DC servomotors are permanent magnet motors, in which speed and 

position are typically the most common parameters to control. Basic DC motors as 

used on nearly all packaged drives have a very simple performance characteristic 

the shaft turns at a speed almost directly proportional to the voltage applied to the 

armature. However, when operated at a fixed applied voltage but a gradually 

increasing torque load, they exhibit a speed drop. In the DC drive a similar type of 

"compensation" is employed in the control to assist in maintaining a nearly 

constant speed under varying load (torque) conditions. 



In this thesis, the PMDC motor model is chosen according to his good electrical 

and mechanical performances more than other DC motor models. The DC motor is 

driven by applied voltage. PMDC motor is found in a wide variety of low-power 

applications. The field winding is a permanent magnet. Permanent magnets offer a 

number of useful benefits such as: 

1. They do not require external excitation. 

2.  Less space requirement. 

3. They are cheaper.  

Field controlled DC motor is open loop while armature controlled is closed loop 

system. Hence armature controlled DC motor are preferred over field controlled 

system for small size motor field control is advantageous because only a low 

power servo amplifier is required while the armature current which is not large can 

be supplied from an expensive constant current amplifier. For large size motor it is 

on the whole cheaper to use armature control scheme. Further in armature 

controlled motor, back emf contributes additional damping over and above that 

provided by load friction. 

The speed of DC motor can be adjusted to a great extent as to provide 

controllability easy and high performance [6].The term speed control stand for 

intentional speed variation carried out manually or automatically DC motors are 

most suitable for wide range speed control and are there for many adjustable speed 

drives. DC motor there are basically three method of speed control: 

1. Variation of resistance in armature circuit. 

2.  Variation of field flux. 

3. Variation of armature terminal voltage.  

The controllers of the speed that are conceived for goal to control the speed of DC 

motor to execute one variety of tasks, is of several conventional and numeric 



controller types, the controllers can be: PID controller, fuzzy logic controller; or 

the combination between them: fuzzy-neural networks, fuzzy-genetic algorithm, 

fuzzy- Ants colony, fuzzy-swarm. They are several methods of speed control: 

i. Traditionally rheostat armature control method was used for low power DC 

motors. 

ii. Use of conventional PID controllers. 

iii. Neural Network Controllers (NNC). 

iv. Constant power field weakening controller based on load-adaptive multi-input 

multi-output linearization technique (in high speed regimes). 

v. A single phase uniform PWM Alternative Current (AC)-DC buck-boost 

converter with only one switching device used for armature voltage control. 

vi.  Use of NARMA-L2 (Non-linear Auto-Regressive Moving Average) controller 

in the constant torque region. 

2.3 PID Controller 

Elmer Sperry created the first PID type controller in 1912 to help with ship 

steering (Bennett, 1979). A PID controller is referred to as a three-term controller 

using a proportional term, integral term, and derivative term combined in a linear 

algorithm. The proportional term calculates the gain based on present error. The 

integral term calculates the sum of all past errors. The derivative term uses the rate 

at which the error has been changing to predict future error. This controller also 

uses a feedback loop to compensate for error. The error is described as the 

difference between the desired set point of the system and the measured variable 

calculated by the P, I, and D terms. Once a PID controller is designed, a tuning 

process must follow in order for the controller to meet the needs of a specific 

system.  



When working with applications where control of the system output due to 

changes in the reference value or state is needed, implementation of a control 

algorithm may be necessary. The PID controller can be used to control any 

measurable variable, as long as this variable can be affected by manipulating some 

other process variables. Many control solutions have been used over the time, but 

the PID controller has become the ‘industry standard’ due to its simplicity and 

good performance [7]. However, these controllers provide better performance only 

at particular operating range and they need to be retuned if the operating range is 

changed. Further, the conventional controller performance is not up to the expected 

level for nonlinear and dead time processes. In the present industrial scenario, all 

the processes require automatic control with good performance over a wide 

operating range with simple design and implementation block diagram of the drive 

with PID controller is shown in Figure 2.1. The speed error e(t) between the 

reference speed u(t) and the actual speed w(t) of the motor is fed to the P-I-D 

controller. The transfer function of the most basic form of PID controller is given 

by: 

C(s) = K୔ +
୏౅
ୱ
+ Kୈs =

୏ీୱమା୏ౌୱା୏౅
ୱ

	                                          (2.1) 

Where KP = Proportional gain, KI = Integral gain and KD = Derivative gain. 

 

Figure 2.1: A schematic of a system with a PID controller 



In PID controller structure we assume the controller is used in a closed-loop unity 

feedback system as shown in Figure 2.1. PID controller is used in more than 95% 

of closed-loop industrial processes. It can be tuned by operators without extensive 

background in controls, unlike many other modern controllers that are much more 

complex but often provide only marginal improvement. In fact, most PID 

controllers are tuned on-site. They are four major characteristics of the closed-loop 

step response that use to understand the PID parameters affect on system 

dynamics: 

 Rise time: the time it takes for the plant output y to rise beyond 90% of the 

desired level for the first time. 

 Overshoot: how much the peak level is higher than the steady state, normalized 

against the steady state. 

 Settling time: the time it takes for the system to converge to its steady state. 

 Steady-state error: the difference between the steady-state output and the desired 

output. 

The effects of increasing each of the controller parameters P, I and D can be 

summarized in Table 2.1 

 Table 2.1: The PID parameters affect on system dynamics 

Response Rise Time Overshoot Settling Time S-S Error 

 ௉ Decrease Increase Not change Decreaseܭ

 ூ Decrease Increase Increase Eliminateܭ

 ஽ Not change Decrease Decrease Not changeܭ

Table 2.1 used for designing a PID controller by the following typical steps: 



 Determine what characteristics of the system need to be improved. 

 Use KP to decrease the rise time. 

 Use KD to reduce the overshoot and settling time. 

 Use KI to eliminate the steady-state error. 

Several approaches were developed for tuning PID controller such as the Ziegler-

Nichols (Z-N) method, the Cohen-Coon (C-C) method, Integral of Squared Time 

weighted Error (ISTE) rule, Integral of Absolute Error (IAE) criteria, and Internal-

Model-Control (IMC) based method and gain-phase margin method [8]. PID 

controllers are usually tuned using hand tuning or Ziegler-Nichols methods to 

obtain the desired performance according to preset criteria. The basic continuous 

feedback control is PID controller. The PID controller exhibits good performance 

but is not adaptive enough (Oyas and Nordin, 2008). 

2.4 Artificial Neural Network 

The science of Artificial Neural Networks (ANNs) is based on the biological 

neuron shown in Figure 2.2. In order to understand the structure of artificial 

networks, the basic elements of the biological neuron should be understood. 

Neurons are the fundamental elements in the central nervous system. A biological 

neuron, it essentially has four main parts: dendrites, cell body, axon, and synapses 

terminals. The dendrites are branching structures that receive electrical impulses or 

signals from other neurons. The dendrites send their signals to the body of the cell. 

The cell body contains the nucleus of the neuron and organelles, but functionally 

processes the incoming signal from the dendrites.  If the sum of the received 

signals is greater than a threshold value (48mv), the neuron fires by sending an 

electrical pulse along the axon to the next neuron. The axon is the portion of the 

neuron that takes the electrical impulses or signals from the cell body to the pre-



synaptic terminals. Pre-synaptic terminals form the end of the axon where it 

junctions with another neuron at a specialized location called a synapse. A synapse 

is where the axon of one neuron communicates with the dendrites of another 

neuron. 

 

 

 

 

 

 

Figure 2.2: Basic elements of a neuron 

Biological neurons are arranged in network architecture with vast numbers of 

neurons interconnected to each other allowing for rapid communication spanning 

throughout all areas of the body. Biological neural networks are much higher in 

complexity than this representation but it is basic structure that ANN's model. 

 

Figure 2.3: Neuron model 
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The model shown in Figure 2.3 is based on the components of the biological 

neuron The inputs X0-X3 represent the dendrites. Each input is multiplied by 

weights W0-W3. The output of the neuron model, Y is a function F of the 

summation of the input signals. 

2.4.1 Literature review 
At the beginning of 1800’s scientists started to discover the nervous system in the 

human body, their work on knowing the structure and function of the nervous 

system continued until 1906 when they started to understand the basic operation of 

the neuron, and had a clear overview of how it operates and how the basic 

interconnection of neurons in the nervous systems looks like (J.J Hofield, 1982). 

After this great discover, McCulloch and Pitts in 1943 came up with the concept of 

artificial neural networks, In 1943 McCulloch and Pitts published a paper that 

discussed biological neuron function in the body, as well as going a step further to 

design and build a primitive artificial neural network made of simple electronics 

(McCulloch, & Pitts, 1943). ANNs are arranged in similar network architecture as 

their biological model; composed of singular and simplistic neurons that 

communicate rapidly through a network. ANNs have artificial neurons arranged in 

three basic layers. An ANNs starts with an input layer containing an equal number 

of neurons to inputs. A middle or hidden layer performs computations to create an 

output. The final layer, the output layer, sends the controller output to the plant 

portion of the system. Each artificial neuron, excluding input neurons in the first 

layer, can have multiple inputs. The artificial neuron sums the weighted inputs and 

formulates a single output that can be propagated to multiple neurons in the next 

layer after processing through an activation function. By combining multitudes of 

singular artificial neurons into a vast processing network, ANNs are capable of 

complex problem solving and control [9]. 



2.4.2 Advantages of ANNs 
 The main advantage of neural networks is that it is possible to train a neural 

network to perform a particular function by adjusting the values of connections 

(weights) between elements. For example, if we wanted to train a neuron model to 

approximate a specific function, the weights that multiply each input signal will be 

updated until the output from the neuron is similar to the function. 

  Neural networks are composed of elements operating in parallel. Parallel 

processing allows increased speed of calculation compared to slower sequential 

processing. 

 ANN has memory. The memory in neural networks corresponds to the weights in 

the neurons. 

2.4.3 Disadvantage of ANNs 
The main disadvantage of ANN is they operate as black boxes. The rules of 

operation in neural networks are completely unknown. It is not possible to convert 

the neural structure into known model structures such as ARMAX,…etc. Another 

disadvantage is the amount of time taken to train networks. It can take considerable 

time to train an ANN for certain functions. 

2.4.4 Types of learning 
Neural networks have three main modes of operation supervised, reinforced and 

unsupervised learning [10].  

 In supervised learning (i.e. learning with a teacher), the output from the neural 

network is compared with a set of targets, the error signal is used to update the 

weights in the neural network.  

 Reinforced learning, (i.e. learning with limited feedback) is similar to 

supervised learning however there are no targets given, the algorithm is given a 

grade of the ANN performance. 



 Unsupervised learning, i.e. learning with no help updates the weights based on 

the input data only. The ANN learns to cluster different input patterns into 

different classes. 

2.4.5 Neural network structures 
There are three main types of ANN structures single layer feedforward network, 

amulti-layer feedforward network and recurrent networks [10]. The most common 

type of single layer feedforward network is the perceptron. Other types of single 

layer networks are based on the perceptron model.  

 Single layer perceptron 

The details of the perceptron are shown in Figure 2.4.  

 

Figure 2.4: Perceptron model 

Inputs to the perceptron are individually weighted and then summed. The 

perceptron computes the output as a function F of the sum. The activation function, 

F is needed to introduce nonlinearities into the network. This makes multi-layer 

networks powerful in representing nonlinear functions. There are three main types 

of activation function tan-sigmoid, log-sigmoid and linear shown in Figure 2.5 [9]. 

Different activation functions affect the performance of an ANN. 



 

Figure 2.5: Types of activation functions 

Single-layer feedforward networks are useful when the data to be trained is linearly 

separable. If the data trying to model is not linearly separable or the function has 

complex mappings, the simple perceptron will have trouble trying to model the 

function adequately. 

 Multi-layered perceptron 

Neural networks can have several layers. There are two main types of multi-layer 

networks feedforward and recurrent. In feedforward networks the direction of 

signals is from input to output, there is no feedback in the layers. This is shown in 

Figure 2.6. 

 



Figure 2.6: Multi layered perceptron 

Increasing the number of neurons in the hidden layer or adding more hidden layers 

to the network allows the network to deal with more complex functions. Cybenko’s 

theorem states that, a feedforward neural network with a sufficiently large number 

of hidden neurons with continuous and differentiable transfer functions can 

approximate any continuous function over a closed interval. The weights in Multi 

Layered Perceptrons (MLP’s) are updated using the backpropagation learning [11]. 

There is two passes before the weights are updated. In the first pass (forward pass) 

the outputs of all neurons are calculated by multiplying the input vector by the 

weights. The error is calculated for each of the output layer neurons. In the 

backward pass, the error is passed back through the network layer by layer. The 

weights are adjusted according to the gradient decent rule, so that the actual output 

of the MLP moves closer to the desired output. A momentum term could be added 

which increases the learning rate with stability. The second type of multi-layer 

networks is shown in Figure 2.7 recurrent networks have at least one feedback 

loop. This means an output of a layer feeds back to any proceeding layer. 

 



Figure 2.7: Recurrent neural network 

This gives the network partial memory due to the fact that the hidden layer 

receives data at time t but also at time t-1. This makes recurrent networks powerful 

in approximating functions depending on time [11]. As an example the 

SIMULINK model for the nonlinear inverted pendulum shows that there are many 

feedback loops. This means the next state of the model depends on previous states. 

It is expected that to accurately model this type of dynamic system, a recurrent 

neural network with feedback loops will perform better than a static feedforward 

network. 

 Backpropagation 

Back-propagation neural network is a multilayer feed forward network with back-

propagation of an error function (Xu et al., 2012). A simple back-propagation 

neural network has only three layers i.e. input, output and middle layer as shown in 

Figure 2.8.  

 
Figure 2.8: Layers of a feed forward neural network 

The input weights are passed on to hidden layer for processing. The hidden layer 

passes calculated weights to the output layer. The error is presented to input layer 

through back propagation (feedback) when actual output is different from the 

desired level. Hence the weights are adjusted to minimize the error through 

training and learning of the neural network. The process continues until the output 



is acceptable or pre-configured learning time is achieved (Zhao et al., 2010).  The 

Backpropagation is: 

 Most common method of obtaining the many weights in the network. 

 A form of supervised training. 

 The basic backpropagation algorithm is based on minimizing the error of the 

network using the derivatives of the error function. 

 Simple. 

 Slow. 

 Prone to local minima issues. 

2.4.6 Applications of neural networks  
In recent years, they have been widely used for optimum calculations and 

processes in industrial controls, communications, pattern recognition and 

classification, control systems, time-series prediction, fault diagnostic, medical 

applications, data analysis, compression and expansion chemistry and petroleum. 

They are on the rise for use in many highly sensitive control mechanisms such as 

flight controls and implementation of high security device 

2.5 Fuzzy Logic 

Fuzzy Logic (FL) is classified in the artificial intelligence category. “Fuzzy Sets” 

were introduced in 1965 by Lotfi Zadeh from the University of California at 

Berkeley (Zadeh, 1965). As an extension of the classical control theory. According 

to him classical control theory put too much emphasis on precision and therefore 

could not the complex system [12]. FL controllers can interpret data that falls in 

the gray area much like a human mind can make cognitive decisions when there is 

no distinct answer. Fuzzy logic is unlike many traditional logic systems in that the 

reasoning is approximate and not exact. It is this logic approximation also done by 



humans with commonsense reasoning that makes FL a form of artificial 

intelligence. Zadeh formulated a mathematical analysis allowing data partial 

membership of a set instead of distinct membership versus non-membership 

categories. Fuzzy sets allow for gradual transition of data classification with 

permissible overlap between membership groups. This revolutionary logic system 

provides a way to describe systems or data that may be too complex or ill-defined 

for traditional analysis using precise mathematical methods. Zadeh ideas were not 

presented as a method of control, but were later applied to control theory and fuzzy 

logic controllers evolved. Fuzzy logic is represented by three parts:  

i. Linguistic variables in place of numerical values using natural language terms 

such as “very”, “not” or “most”. 

ii.  Fuzzy conditional statements to form IF, THEN statements. 

iii. Fuzzy algorithms that creates an order to the rules or instructions (Zadeh,1990). 

2.5.1 Fuzzy logic controller 

Fuzzy Logic Control (FLC) is one of the most successful applications of fuzzy set 

theory, introduced by L.A Zadeh in 1965 and applied (Mamdani 1974) in an 

attempt to control system that are structurally difficult to model. Since then, FLC 

has been an extremely active and fruitful research area with many industrial 

applications reported [12]. In the last three decades, FLC has evolved as an 

alternative or complementary to the conventional control strategies in various 

engineering areas. Fuzzy control theory usually provides non-linear controllers that 

are capable of performing different complex non-linear control action, even for 

uncertain nonlinear systems. Unlike conventional control, designing a FLC does 

not require precise knowledge of the system model such as the poles and zeroes of 

the system transfer functions. Imitating the way of human learning, the tracking 



error and the rate change of the error are two crucial inputs for the design of such a 

fuzzy control system [13-14]. 

Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be 

described simply as "computing with words rather than numbers", fuzzy can be 

described simply as "computing with sentences rather than equations". A fuzzy 

controller can include the empirical rules, and that is especially useful in operating 

controlled plants [15]. Fuzzy control provides a formal methodology for 

representing, manipulating and implementing a human’s heuristic knowledge of 

how to control a system. Fuzzy controllers are used in various control schemes. 

The most obvious one in the direct control where the fuzzy controller is in the 

forward path in a feedback control. Fuzzy controller block diagram is given in 

Figure 2.9, where we show a fuzzy controller embedded in a closed-loop control 

system. The plant outputs are denoted by y(t) , its inputs are denoted by u(t), and 

the reference input to the fuzzy controller is denoted by r(t). A fuzzy controller is 

used. It replaces the conventional controller, say, a PID controller. 

 

 

 

 

 

 

 



Figure 2.9: Fuzzy controller architecture 

2.5.2 Structure of fuzzy controller  

There are specific components characteristic of a fuzzy controller to support a 

design procedure. In the block diagram in Figure 2.10, the controller is between 

preprocessing block and a post-processing block. The following explains the 

diagram block by block.  

 

Figure 2.10: Fuzzy controller 

(a) Pre-processing 
The inputs are most often measured in hard or crisp from some measuring 

equipment, rather than linguistic. A preprocessor, the first block in           Figure 

2.14, conditions the measurements before they enter the controller. For this plant, 

the design preprocessing involves: 

 Quantization in connection with sampling to integer.  

 Normalization or scaling onto particular and standard rang. 

(b) Fuzzification 
Refer Figure 2.11 the first block in the controller is the fuzzification. It converts 

each input data to a certain degree of membership by a lookup in one or several 

membership functions. The fuzzification block matches the input data with the 

conditions of the rules to determine how well the condition of each rule matches 

Preprocessing  

Fuzzification  Rule Base 

   

Defuzzificatoin  

Postprocessing 

 

Inference Engine  



that particular input instance. There is a degree of membership for each linguistic 

term that applies to that input variable. 

 Degree of membership (μ) 

The degree of membership (μ) is the degree to which a crisp variable belongs to a 

fuzzy set. It is expressed either as a fractional value ranging from 0.0 to 1.0 or 

percentage ranging from 0% to 100%. 

 Universe of discourse 

Elements of a fuzzy set are taken from a universe of discourse or just universe. The 

universe contains all elements that can come into consideration. Before designing 

the membership function it is necessary to consider the universe for the inputs and 

outputs. Naturally, the membership function for N and P must be defined for all 

possible values of error and change in error, and a standard universe may be 

convenient.  

For this development this plant, three membership functions is considered, there 

are error (e), change of error (ce) and change of control signal (u) which the range 

(universe of discourse). The universe of discourse is considered based on 

environment and equipment condition and also considers other possibility might be 

occurred and influences the performance of system.  

 Membership function  

Every element in the universe of discourse is a member of a fuzzy set to some 

grade, maybe even zero. The grade of membership for all its members describes a 

fuzzy set, such as Z, P and N are Zero, Positive and Negative respectively. In fuzzy 

sets elements are assigned a grade of membership, such that the transition from 

membership to non-membership is gradual rather than abrupt. The set of elements 

that have a non-zero membership is called the support of the fuzzy set. The 

function that ties a number to each element x of the universe is called the 

Membership Functions (MFs). 



 Start with triangular sets. All membership functions for a particular input or 

output should be symmetrical triangles of the same width. The leftmost should be 

shouldered ramps.  

 The overlap should be at least 50%.The width should initially be chosen so that 

each value of the universe is a member of at least two sets, except possibly for 

elements at the extreme ends. If, on the other hand, there is a gap between two sets 

no rules fire for values in the gap. Consequently the controller function is not 

defined. 

Membership function can be flat on the top, piece-wise linear and triangle shaped, 

rectangular, or ramps with horizontal shoulders.  

 Determine the MFs 

 Use the knowledge of human experts  

 Data collected from various sensors  

In order to define fuzzy membership function, designers choose many different 

shapes based on their preference and experience. There are generally four types of 

membership functions used:  

 Trapezoidal MF.  

 Triangular MF. 

 Gaussian MF. 

 Generalized bell MF.  

Among them the most popular shapes are triangular and trapezoidal because these 

shapes are easy to represent designer’s idea and require low computation time.  

(c) Rule base 
 Fuzzy systems are knowledge based or rule based systems. The heart of a fuzzy 

system is a knowledge base consisting of the so- called If-Then rules. A fuzzy If-

Then statement in which some words are characterized by continuous membership 



functions. After defining the fuzzy sets and assigning their membership functions, 

rules must be written to describe the action to be taken for each combination of 

control variables. These rules will relate the input variables to the output variable 

using If-Then statements which allow decisions to be made. The If (condition) is 

an antecedent to the Then (conclusion) of each rule, the controller may requires 

both the error, the change in error and the accumulated error as inputs, but we well 

call it a signal-loop control, because in principle all the three are formed from the 

error measurement. To simplify, the objective of this controller is to regulate some 

process output around a prescribed set point or reference [16]. 
 Rule format 

Basically a linguistic controller contains rules in the if-then format, but it can be 

represented in different formats especially for complex system. Each rule in 

general can be represented in the following manner:  If (antecedent) Then 

(consequence).  

(d) Inference engine  
Inference engine is defined as the software code which processes the rules, cases, 

objects or other type of knowledge and expertise based on the facts of a given 

situation. When there is a problem to be solved that involves logic rather than 

fencing skills, we take a series of inference steps that may include deduction, 

association, recognition, and decision making. An inference engine is an 

information processing system (such as a computer program) that systematically 

employs inference steps similar to that of a human brain. The inference mechanism 

provides the mechanism for invoking or inferring to the rule base such that the 

appropriate rules are fired. There are several inference procedures that can be used 

in FLCs listed as follow: 

i. Max-Min. 

ii. Max-Algebraic Product (or Max-Dot). 



iii. Max-Bounded Product. 

iv.  Max-Drastic Product. 

v. Max-Bounded Sum.  

vi. Max-Algebraic Sum.  

Two most common methods used in FLC are the max-min composition 

(introduced by Mamdani) and the max-algebraic product composition. The 

inference or firing with this fuzzy relation is performed via the operation between 

the fuzzified crisp input and the fuzzy relation representing the meaning of the 

overall set of rules. As a result of composition, one obtains the fuzzy set describing 

the fuzzy value of the overall control output. After inference process, the values is 

obtained by ∆u will be used at defuzzification process and that values will be 

converted to a number that can be sent to the process as a control signal.  

(e) Defuzzification 

The resulting fuzzy set must be converted to a number that can be sent to the 

process as a control signal. This operation is called defuzzification and the 

resulting fuzzy set is thus defuzzified into a crisp control signal. There are several 

defuzzification methods is typical used and shown as follow [16]. 

 Centre Of Gravity (COG). 

 Centre Of Gravity Method for Singletons. 

 Mean Of Maxima (MOM). 

 Bisector Of Area (BOA). 

 Left Most Maximum (LM).   

 Right Most Maximum (RM). 

(f) Post-processing  
Output scaling is also relevant. In case the output is defined on a standard universe 

this must be scaled to engineering unit, for instance, volts, meters, or tons per hour. 



An example is the scaling from the standard universe (-1, 1) to the physical units (-

5, 5) volts. 

 

2.5.3 Application of FLC  
The description of the technological process is available only in word form, not in 

analytical form.  

 It is not possible to identify the parameters of the process with precision.  

 The description of the process is too complex and it is more reasonable to 

express its description in plain language words.  

 The controlled technological process has a “fuzzy” character, i.e. its behavior is 

not fully unequivocal under precisely defined conditions [16]. 

2.5.4 Advantages of using fuzzy technique  
 Simplicity of control and smooth operation. 

 High degree of tolerance.  

 Low cost. 

 Reduce the effect of non-linearity.  

 Inherent approximation capability. 

 Possibility to design without knowing the exact mathematical model of the 

process.  

2.6 Neuro Fuzzy System 
In spite of the advantages in fuzzy control, the main limitations are the lack of a 

systematic design methodology and the difficulty in predicting stability and 

robustness of the controlled system. A trial-and-error iterative approach is taken 

for the controller design due to which we get sluggish response.  The neuro-fuzzy 

learning incorporates the architecture of neural network based fuzzy inference 

system. A given training data set is partitioned into a set of clusters based on 



subtractive clustering method. This is fast and robust method to generate the 

suitable initial membership functions and rule base. A fuzzy if-then rule is then 

extracted from each cluster to form a fuzzy rule base from which a fuzzy neural 

network is designed. Then a hybrid learning algorithm is used to refine the 

parameters of fuzzy rule base. 

2.6.3 Adaptive neuro fuzzy inference system 
Adaptive Neuro-Fuzzy Inference System (ANFIS) is one of the most successful 

schemes which combine of the fuzzy logic and neural network systems into a 

single technique. (Jang, 1993). An ANFIS works by applying neural learning rules 

to identify and tune the parameters and structure of a Fuzzy Inference System 

(FIS). There are several features of the ANFIS which enable it to achieve great 

success in a wide range of scientific applications. The attractive features of an 

ANFIS include: easy to implement, fast and accurate learning, strong 

generalization abilities, excellent explanation facilities through fuzzy rules, and 

easy to incorporate both linguistic and numeric knowledge for problem solving 

(Jang & Sun, 1995; Jang et al., 1997). According to the neuro-fuzzy approach, a 

neural network is proposed to implement the fuzzy system, so that structure and 

parameter identification of the fuzzy rule base are accomplished by defining, 

adapting and optimizing the topology and the parameters of the corresponding 

neuro-fuzzy network, based only on the available data. 

By using the neuro-fuzzy scheme, the fuzzy inference system can be tuned with a 

neural network algorithm based on some collection of input-output data, which 

then allow the fuzzy system to learn. Fundamentally, it takes a FIS and tunes it 

with a backpropagation algorithm based on some collection of input-output data. 

This allows FIS to learn. The network structure facilitates the computation of the 

descendent gradient vector for parameters in a FIS. Once the gradient vector is 



obtained, we can apply a number of optimization routines to reduce an error 

measure (usually defined by the sum of the squared difference between actual and 

desired outputs) [17]. 

2.6.4 Neuro-fuzzy controller 
The adaptive neuro-fuzzy inference system uses a feedforward network to search 

for fuzzy decision rules that perform well in a given task. Using a given 

input/output data set ANFIS creates a fuzzy inference system for which 

membership function parameters are adjusted using a combination of a back 

propagation and least square method [18].  

The proposed scheme utilizes sugeno-type FIS controller, with the parameters 

inside the FIS decided by the neural-network back propagation method. The 

ANFIS is designed by taking speed error (e) and change in speed error (ce) as the 

inputs. The output stabilizing signals is computed using the fuzzy membership 

functions depending on these variables. ANFIS-editor is used for realizing the 

system and implementation. In a conventional fuzzy approach the membership 

functions and the consequent models are fixed by the model designer according to 

a prior knowledge. If this set is not available but a set of input-output data is 

observed from the process, the components of a fuzzy system (membership and 

consequent models) can be represented in a parametric form and the parameters are 

tuned by neural networks. In that case the fuzzy systems turn into neuro-fuzzy 

system. A fuzzy system can explain the knowledge it encodes but can’t learn or 

adapt its knowledge from training examples, while a neural network can learn from 

training examples but cannot explain what it has learned. Fuzzy systems and neural 

networks have complementary strengths and weaknesses. As a result, many 

researchers are trying to integrate these two schemes to generate hybrid models 

that can take advantage of strong points of both. 
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CHAPTER THREE 

CONTROL SYSTEM DESIGN OF DC MOTOR 

3.1 Introduction 

In spite of the development of power electronics resources, the direct current 

machine became more and more useful. Nowadays their uses isn’t limited in the 

car applications (electrics vehicle), in applications of weak power using battery 

system (motor of toy) or for the electric traction in the multi-machine systems too. 

The speed of DC motor can be adjusted to a great extent as to provide 

controllability easy and high performance. The controllers of the speed that are 

conceived for goal to control the speed of DC motor to execute one variety of 

tasks, is of several conventional and numeric controller. The main idea of this 

thesis is to develop ANFIS controller, FLC and conventional PID controller shown 

in Figure 3.1 by using MATLAB/SIMULINK. The target of the study is control 

the speed of the DC motor. The results for all simulations are elaborate and discuss 

in chapter four in result section. 

 

Figure 3.1 Speed control of DC motor 



Main controller of this project is to perform neuro fuzzy controller while fuzzy 

controller and PID controller is use to compare the performance of the controller. 

3.2 Mathematical Model of PMDC Motor  
The goal of this section is to develop the mathematical model in sense that is 

related to the applied voltage to the armature to the velocity of motor. By 

considering electrical a mechanical characteristics of the system so as to balance 

equation developed. Modeling can be defined as simplified representation of a 

system, for example using mathematical equation. But a variety of mathematical 

models for direct drive cannot give the exact and definite description of drive 

behavior. The approach to mathematical model constructing and its verification is 

described. The model which with sufficient accuracy describes direct drive is 

based on model building of physical processes which take place in electrical drive. 

Mathematical model presented is used to compute simulation of control system 

with different regulators to improve motor’s dynamics, and, as the result, 

hardware performance and precision. In this chapter DC motor speed control 

system is described. The DC motor used is of permanent magnet type. The model 

of the permanent magnet DC motor is first developed, followed by the discussion 

on the mechanism that will be used to drive the motor. 

A permanent magnet DC motor consists of permanent magnet stator and armature 

windings in the rotor. The armature winding is supplied with a DC voltage that 

causes a DC current to flow in the windings. Interaction between the magnetic 

field produced by the armature current and that of the permanent magnet stator 

causes the rotor to rotate. The equivalent circuit of a PMDC motor is shown in 

Figure 3.2. The controller is selected so that the error between the system output 

and reference signal eventually tends to its minimum value, ideally zero. There are 



various DC motor types. Depending on type, a DC motor may be controlled by 

varying the input voltage whilst another motor only by changing the current input. 

 

Figure 3.2: The equivalent circuit of a PMDC motor 

The equations describing the characteristic of a PMDC motor can be determined 

from Figure 3.2. The basic structure of a DC motor can be divided into two parts; 

the voltage controlled circuitry and mechanical rotor. The motor torque provides 

the movement over inertia for the rotor system. If the motor initially is in a static 

condition, it requires a larger torque value to start the motor. If the motor initially 

is in a moving condition, the inertia of the motor will sum up with the system 

torque to give a grater rotation, which will further increase the moment speed of 

this system.  

The characteristic equations of the PMDC motor are represented as: 

(a) Electrical equations 

The electrical circuit of motor is shown in Figure 3.2 represent a series wound DC 

motor. The selection a series wound DC motor is better because this type of motor 

provide better performance on heavy torque loads.  Figure 3.2 shows the voltage 

source ௔ܸ	across the coil of armature. The electrical circuit equivalent of the 

armature and inductance ܮ௔ and resistance ܴ௔ are in series with induced voltage 

 ௚which opposes the source voltage. The induced voltage is generated due toܧ



electrical coil rotating in fixed flux lines of the permanent magnet .This voltage is 

often called back-emf voltage. Using the Kirchoff’s law, the circuit equivalent 

equation can be developed as shown in         equation (3.1) that needs to be taken 

into consideration is the DC motor equivalent circuit characteristic equation: 

(ݐ)௔ݒ = ܴ௔. ݅௔(ݐ) + ௔ܮ .
ௗ௜ೌ(௧)
ௗ௧

+ ݁௕(ݐ)                                                           (3.1) 

(b) Mechanical equation 

The turning effect of force called torque or a force are tries to rotate about its own 

axis is called torque. Here different torque is effecting the motors and its order to 

get mechanical equation take all the torque equal to zero. The current which passes 

through the armature winding is proportional to the electromagnetic torque which 

can be expressed as: 

௠ܶ(ݐ) =  (3.2)                                                                                           (ݐ)௔்݅ܭ

The developed torque must be equal to the load torque: 

௠ܶ(ݐ) = .௠ܬ
ௗఠ(௧)
ௗ௧

+ .௠ܤ (ݐ)߱ + ௅ܶ(ݐ)                                                          (3.3) 

The back-emf is related to the rotational velocity by the constant factor expressed 

as: 

݁௕(ݐ) = .௕ܭ  (3.4)                                                                                           (ݐ)߱

(ݏ)௔ݒ = ܴ௔ . ݅௔(ݐ) + .௔ܮ ݅௔(ݐ) + ௕ܭ .  (3.5)                                                     (ݐ)߱

்݇. ݅௔(ݐ) = .௠ܬ
ௗఠ(௧)
ௗ௧

+ .௠ܤ (ݐ)߱ + ௅ܶ(ݐ)                                                     (3.6) 

Laplace transform of (3.5) and (3.6) are: 



௔ܸ(ݏ) = ܴ௔. (ݏ)௔ܫ + .ݏ ௔ܮ . (ݏ)௔ܫ + .௕ܭ  (3.7)                                                 (ݏ)߱

்݇. (ݏ)௔ܫ = .ݏ .௠ܬ (ݏ)ݓ + .௠ܤ (ݏ)߱ + ௅ܶ(ݏ)                                                 (3.8) 

If current is obtained from (3.8) and substitute in (3.7) we have: 

௔ܸ(ݏ) = .(ݏ)߱ ଵ
௄೅
[ܴ௔ . (ݏ)௔ܫ + .ݏ .௔ܮ (ݏ)௔ܫ + ௕ܭ .  (3.9)                                 [(ݏ)߱

The relation between rotor shaft speed and applied armature voltage is represented 

by transfer function 

ఠ(௦)
௏(௦)

= ௄೅
(௅ೌ௦ାோೌ)(௃೘௦ା஻೘)ା௄೅௄್

                                                               (3.10) 

Where: 

 ௔= armature current (A)ܫ

௔ܸ= armature voltage (V) 

 ௕= back-emf voltage (V)ܧ

  ௕= back-emf constant (V/rad/s)ܭ

 ௔= armature circuit inductance (H)ܮ

ܴ௔= armature circuit resistance (Ω) 

ω = motor speed (rad/s) 

 ௠= moment of inertia of (load and rotor) (N.m2)ܬ

 ௠ = viscous friction constant (N.m/rad/s)ܤ

 torque constant (N.m/A) =்ܭ

௅ܶ= load torque (N-m) 

௠ܶ = motor developed torque (N-m) 



 ௕=back emf constantܭ

It can be noticed from equation (3.9) that the motor speed can be varied by 

controlling the armature voltage 	 ௔ܸ	 or the armature current	ܫ௔. The direction of 

rotation of the motor can be reversed by reversing the polarity of the voltage 

applied to the terminal. If the voltage applied to the motor terminal is reversed, the 

direction of current flowing in the armature winding is also reversed. This will 

cause the motor to produce torque in the reverse direction. Note here that the 

polarity of the back-emf voltage is also reversed. The equation (3.10) can be used 

in order to obtain the SIMULINK model 

(c) Parameters of PMDC motor 

The DC motor parameters considered for this work is that used in an undergraduate 

experiment carried out in Carnegie Mellon Control Laboratory of University of 

Michigan, United States [6]. 

ܴ௔ = 1Ω 

 ௔= 0.5Hܮ 

 ௕= 0.01 V/rad/sܭ

 ௠= 0.01 kg.m2ܬ 

 ௠ = 0.001 N.m/rad/sܤ 

 0.01Nm/Amp = ்ܭ 

3.3 SIMULINK Model of PMDC Motor 

SIMULINK is a software package for modelling, simulating, and analyzing 

dynamic systems. It supports linear and nonlinear systems, modelled in continuous 

time, sampled time, or a hybrid of the two. Systems can also be multi rate, i.e., 

have different parts that are sampled or updated at different rates. SIMULINK 



encourages user to try things out. The user can easily build models from scratch, or 

take an existing model and add to it. Simulations are interactive, so the user can 

change parameters on the fly and immediately see what happens. The users have 

instant access to all the analysis tools in MATLAB, so they can take the results and 

analyze and visualize them. A goal of SIMULINK is to give user a sense of the fun 

of modelling and simulation, through an environment that encourages user to pose 

a question, model it, and see what happens. With SIMULINK, user can move 

beyond idealized linear models to explore more realistic nonlinear models, 

factoring in friction, air resistance, gear slippage, hard stops, and the other things 

that describe real-world phenomena.The MATLAB/SIMULINK model of the 

system under study is shown in Figure 3.3. 

 
Figure 3.3: SIMULINK model for PMDC motor 

3.4 Design of PID Controller 

The combination of Proportional, Integral and Derivative control action is called 

PID controller action. The PID controller is one of the conventional controllers and 

it has been widely used for the speed control of DC motor drive. The parameters 



values of PID can be interpreted in terms of time,           P depends on the present 

error, I on the accumulation of past errors, and D is a prediction of future errors 

based on current rate of change. The weighted sum of these three actions is used to 

adjust the process via a control element such as the speed. The conventional 

method has the following difficulties: 

i. It depends on the accuracy of the mathematical model of the systems. 

ii. The expected performance is not met due to the load disturbance, motor 

saturation and thermal variations. 

iii. Classical linear control shows good performance only at one operating speed. 

iv. The coefficients must be chosen properly for acceptable results, whereas 

choosing the proper coefficient with varying parameters like set point is very 

difficult. 

To implement conventional control, the model of the controlled system must be 

known. The usual method of computation of mathematical model of            a 

system is difficult. When there are system parameter variations or environmental 

disturbance, the behavior of the system is not satisfactory. Usually classical control 

is used in electrical motor drives. The classical controller designed for high 

performance increases the complexity of the design and hence the cost. 

The PID controller is placed in the forward path, so that its output becomes the 

voltage applied to the motor armature the feedback signal is a velocity. The output 

velocity signal w(t) is summed with a reference or command signal r(t) to form the 

error signal e(t). Finally, the error signal is the input to the PID controller. 

 

3.4.3 PID parameters 



PID controller can be investigated under three main categories. Each controller has 

different properties in terms of controlling the whole system. 

 In proportional control, adjustments are based on the current difference between 

the actual and desired speed. 

 In integral control, adjustments are based on recent errors. 

 In derivative control, adjustments are based on the rate of change of errors. 

3.4.4 Tuning PID parameters  

There are many tuning methods, but most common methods are as follows: 

 Manual tuning method. 

 Ziegler-Nichols tuning method. 

 Cohen-Coon tuning method. 

 PID tuning software methods (ex. MATLAB). 

PID controllers are usually tuned using hand tuning or Ziegler –Nicholas methods 

and soft tuning. Hand tuning or Ziegler Nichols is generally used by experienced 

control engineers based on the rules shown in Table 2.1. But these rules are not 

always valid. For example if an integrator exists in the plant, then increasing K୔ 

results in a more stable control. Figure 3.11 shows the SIMULINK model for 

speed control of PMDC motor using PID controller.  



Figure 

3.4:SIMULINK model for speed control of PMDC motor using PID  

3.5 Fuzzy Controller Design 

Fuzzy control provides a formal methodology for representing, manipulating and 

implementing a human’s heuristic knowledge of how to control a system. Fuzzy 

control system design essentially amounts to: 

1. Choosing the fuzzy controller inputs and outputs. 

2. Choosing the preprocessing that is needed for the controller inputs and possibly 

post processing that is needed for the outputs. 

3. Designing each of the four components of the fuzzy controller as shown in  

Moreover, most often the designer settles on an inference mechanism and may use 

this for many different processes. Hence, the main part of the fuzzy controller that 

we focus on for design is the rule-base. The rule-base is constructed so that it 

represents a human expert “in-the-loop”. Hence, the information that we load into 

the rules in the rule-base may come from an actual human expert who has spent 

long time learning how best to control the process. In other situations there is no 

such human expert, and the control engineer will simply study the plant dynamics 

(perhaps using modeling and simulation) and write down a set of control rules that 

makes sense. The fuzzy controller has four main components: 



i. The “rule-base” holds the knowledge, in the form of a set of rules, of how best to 

control the system. 

ii. The inference mechanism evaluates which control rules are relevant at the 

current time and then decides what the input to the plant should be. 

iii. The fuzzification interface simply modifies the inputs so that they can be 

interpreted and compared to the rules in the rule-base. 

iv. Defuzzification converts the conclusions reached by the inference mechanism 

into plant inputs. 

3.5.3 Developing fuzzy expert system  

Define linguistic variables and also specify the problem is the first step to make the 

mamdani controller. 

(a) Linguistic variables and their representations 

Linguistic variable (linguistic term) defined by Zadeh, a linguistic variable are 

mean a variable whose values are words or sentences in a natural or artificial 

language. They are three main linguistic variables: 

i. error (e) 

ii. change in error (ce) 

iii. output (u) 

In fuzzy logic, some of the typical linguistic terms used are shown in         Table 

3.1 

          Table 3.1 Meaning of typical linguistic term in fuzzy logic 

Linguistic term Meaning 

PB Positive Big 

PS Positive Small 

ZR Zero 



NS Negative Small 

NB Negative Big 

 

(b) Fuzzification 

The fuzzy set of the error ‘e’ input which contains five triangular memberships,  

the fuzzy set of the change error ’ce’ input which contains five triangular 

memberships and  the fuzzy set of the output ‘u’ which contains five triangular 

memberships  are shown in Figure 3.5. 

(c) Defuzzification 

Bisector of Area (BOA) method was used in this study.  

(d) Control base rules 

Table 3.2 presents the knowledge base defining the rules for the desired 

relationship between the input and output. 

    Table 3.2: Rule base for five membership functions 

       e 

  ce 

NB NS ZR PS PL 

NB NB NB NB NS ZR 

NS NB NS NS ZR PS 

ZR NB NS ZR PS PB 

PS NS ZR PS PS PB 

PB ZR PS PB PB PB 

3.5.4 Fuzzy logic toolbox  



There are five primary GUIs tools for building, editing and observing fuzzy 

inference systems in the toolbox: 

i. Fuzzy inference system editor. 

ii. Membership function editor. 

iii. Rule editor. 

iv. Rule viewer. 

v. Surface viewer. 

These GUIs are dynamically linked and if the changes make to the FIS to one of 

the toolbox, the effect can be seen in other GUIs. In addition to these five primary 

GUIs, the toolbox includes the graphical ANFIS editor GUI, which is used for 

building and analyzing Sugeno-types adaptive neural fuzzy inference systems. 

 

Figure 3.5: Fuzzy inference system 



 Fuzzy basic FIS editor 

The FIS editor displays high-level information about a fuzzy inference system 

shown in Figure 3.6. Fuzzy logic toolbox does not limit at the top is a diagram of 

the system with each input variable on the left and the output on the right clearly 

labeled. The following step shown how to open the FIS editor: 

i. To start the system from scratch, type fuzzy at the MATLAB prompt. 

ii. Select edit > add variable > input (to add second input). 

iii. Click the yellow box input1. This box is highlighted with a red outline. 

iv.  edit the name field from input1 to ‘e’, and press enter. 

v.  Click the yellow box input2. This box is highlighted with a red outline. 

vi. Edit the name field from input2 to’ ce’, and press enter. 

vii. Click the blue box output1. 

viii.  Edit the name field from output1 to ‘u’, and press enter. 

ix. Select file > export > to workspace. 

x.  Enter the workspace variable name “SIDDIG’, and click ok. 

 

Figure 3.6: FIS editor 



By adding input variable from edit menu then FIS give two inputs variable which 

one is error (e) and another is change of error (ce) eatch one consist of five 

membership functions to give 25 rules. 

 Membership function editor 

The membership function editor shares some features with the FIS editor. The 

membership function editor is the tool that lets the programmer displays and edits 

all of the membership functions associated with all inputs and output variables for 

entire fuzzy inference system.  The step below shows how to open the membership 

function editor: 

 Within the FIS editor windows, select edit > membership functions. 

 Within the FIS editor, double click the blue icon called ‘SIDDIG’. 

 At the command line, type mfedit (‘SIDDIG’). 

The mfedit (‘SIDDIG’) generates a membership function editor shown in  Figure 

3.7 that allows  to modify all the membership functions for the FIS stored in the 

file. The Membership Functions (MFs) editor is used to create, remove, and 

modify the MFs for a given fuzzy system. On the left side of the diagram is a "FIS 

variable” region that used to select the current variable by clicking once on one of 

the displayed boxes. Information about the current variable is displayed in the text 

region below the palette area. To the right is a plot of all the MFs for the current 

variable. It could select any of these by clicking once on the line or name of the 

MF. Once selected, It could modify the properties of the MF using the controls in 

the lower right. MFs are added and removed using the edit menu. 



 

Figure 3.7: Membership function 

 Rule editor 

The rule editor shown in Figure 3.8, when invoked using ruleedit ('SIDDIG'), is 

used to modify the rules of a FIS structure stored in a file, SIDDIG.fis. It can also 

be used to inspect the rules being used by ‘SIDDIG’ fuzzy inference system. Based 

on the description of the input and output variable defined with the FIS editor, the 

rule editor allows constructing the rule statements automatically. From GUI: 

 Create rules by selecting an item in each input and output variable box and one 

connection item and clicking add rule. You can choose none as one of the variable 

qualities to exclude that variable from a given rule and choose not under any 

variable name to negate the associated quality. 

 Delete a rule by selecting the rule and clicking delete rule. 

 Edit a rule by changing the selection in the variable box and clicking change 

rule. 



 Specify weight to a rule by typing in a desired number between 0 and 1 in 

Weight. If you do not specify the weight, it is assumed to be unity (1).  

 

Figure 3.8: Rule editor 

 Rule viewer 

The rule viewer displays shown in Figure 3.9 in one screen, all parts of the fuzzy 

inference process from inputs to outputs.  

 



Figure 3.9: Rule viewer 

Each row of plots corresponds to one rule, and each column of plots corresponds to 

either an input variable (yellow, on the left) or an output variable (blue, on the 

right). It could change the system input either by typing a specific value into the 

Input window or by moving the long yellow index lines that go down each input 

variable's column of plots. 

 Output surface viewer 

The input-output mapping can be observed by viewing surface. Choose view menu 

and under it view surface. The surface viewer shown in Figure (3.10) invoked 

using surfview ('SIDDIG') is a GUI tool that lets to examine the output surface of a 

FIS, SIDDIG.fis, for any one or two inputs. Since it does not alter the fuzzy system 

or its associated FIS matrix in any way, it is a read-only editor. It is clear that our 

map is nonlinear. This is where the power of fuzzy systems is strong. 

 

Figure 3.10: Surface viewer 



Figure 3.11 shows the SIMULINK model for speed control of PMDC motor using 

FLC.  

 

Figure 3.11 SIMULINK model for speed control of PMDC motor using FLC 

3.6 Adaptive Neuro Fuzzy Controller Design 

ANFIS uses a hybrid learning algorithm to identify the membership function 

parameters of single-output, Sugeno type fuzzy inference systems. A combination 

of least-squares and backpropagation gradient descent methods are used for 

training FIS membership function parameters to model a given set of input/output 

data. The ANFIS uses a feedforward network to search for fuzzy decision rules 

that perform well in a given task. Using a given input/output data set ANFIS 

creates a fuzzy inference system for which membership function parameters are 

adjusted using a combination of a back propagation and least square method. 

ANFIS estimator design consists of two parts: constructing and training. In the 

constructing part, structure parameters are determined. These are type and number 

of input MFs, and type of output MFs. Effective partition of the input space is 



important and it can decrease the rule number and thus increase the speed in both 

learning and application phase. Output MFs can be either a constant or in linear 

form. Both of the two forms are used for the output MF in this study. Having 

described the number and type of input MFs, the estimator rule base is constituted. 

Since, there is no standard method to utilize the expert knowledge; automatic rule 

generation method is usually preferred. According to this method, for instance, an 

ANFIS model with two inputs and five MFs on each input would result in 52 = 25 

Takagi-Sugeno fuzzy if-then rules automatically. Although this method may 

requires much computational knowledge, especially in systems that have to be 

defined with many inputs. It is used in this study due to the advantage of 

MATLAB software. Therefore, rule bases of estimators are formed automatically 

with the number of inputs and number of MFs. After the ANFIS structure is 

constructed, learning algorithm and training parameters are chosed. As mentioned 

earlier in this paper, back propagation or hybrid learning can be used as a learning 

algorithm. Therefore, hybrid learning algorithm is adopted in this study. 

Parameters in the algorithm are epoch size (presentation of the entire data set), 

error tolerance, initial step size, step size decrease rate, and step size increase rate. 

Since there is no exact method in the literature to find the optimum of these 

parameters a trial and error procedure is used. MATLAB fuzzy logic toolbox is 

used to design ANFIS estimators’ structures. Using the given training data set, the 

toolbox constructs an ANFIS structure using either a back propagation algorithm 

alone, or in combination with least squares type of method (hybrid algorithm). 

ANFIS model can be generated either from the command line, or through the 

ANFIS editor GUI. In this study, ANFIS editor GUIs is used to generate ANFIS 

models with the chosen design parameters in the construction phase. 



As it was mentioned, for good performance of an ANFIS controller, it should be 

fed by optimized inputs and outputs. In order to achieve this goal, many methods 

have been invented. This research tries to create a method of feeding the inputs and 

output of an ANFIS which is here called PID-based (composed method) ANFIS 

method in five steps: 

(1) In the first step of this method we assume a special transfer function and 

control it with a PID controller with the best P, I and D parameters. This controller 

should control that process well with best P I and D parameters. 

(2) At this stage of this method, the output of the PID controller should be sent to 

the workspace in MATLAB software in some points. It’s better to have some more 

points to have better accuracy. 

(3) At this step, these points should be modified and optimized the points by an 

expert operator, on the points that the PID controller does not act well. 

(4) During this step of this method after modification the points, we train the 

ANFIS inputs and output with these modified points. The inputs are the error and 

the deviation of the error, and the output is the output of third step. 

(5) In this step use the new ANFIS controller to control the mentioned transfer 

function. 

After above steps the ANFIS controller has some fuzzy rules and memberships 

with special inputs and output. This may used also for unknown non-linear process 

plants. In the first step ,In order to achieve this goal to control the process with a 

PID controller. After that with the composed method we can have the ANFIS 

controller to control that unknown process much better. The four steps of ANFIS 

estimator design are as follows:  

1. Generated training data is loaded to the Editor GUI. 



2. Design parameters, number and type of input and output MFs, are chosen. Thus, 

initial ANFIS structure is formed. 

3. The code for training is run with an initial structure. 

4. ANFIS structure constituted after training is saved. 

3.6.1 ANFIS editor 

Using anfisedit to bring up the ANFIS editor shown in Figure 3.12 GUIs from 

which the data set and train anfis were loaded. The ANFIS editor GUI invoked 

using anfisedit('a'), opens the ANFIS editor GUI from implement ANFIS using a 

FIS structure stored as a file a.FIS anfisedit(a) operates the same way for a FIS 

structure a, stored as a variable in the MATLAB workspace, Figure 3.13 shows 

ANFIS model structure . On the ANFIS editor GUI, there is a menu bar that allows 

you to open related GUI tools, open and save systems, and so on. The file menu is 

the same as the one found on the FIS editor. By using the following edit menu 

item: 

 Undo to undo the most recent change. 

 FIS properties to invoke the FIS editor. 

 Membership functions to invoke the membership function editor. 

 Rules to invoke the rule editor. 

 By using the following view menu items: 

 Rules to invoke the rule viewer. 

 Surface to invoke the surface viewer. 



 

Figure 3.12: ANFIS editor 



 

Figure 3.13: ANFIS model structure 

Figure 3.14 shows the SIMULINK model for speed control of PMDC motor using 

ANFIS  controller. 

 

Figure 3.14: SIMULINK model for speed control of DC motor using ANFIS  



3.6.2 Flow chart for ANFIS training process 

The ANFIS training off-line methodology using ANFIS GUI in MATLAB fuzzy 

logic Toolbox is summarized in Figure 3.15. The process begins by obtaining a 

training data set (input/output data pairs). The training data set is used to find the 

premise parameters for the membership functions. A threshold value for the error 

between the actual and desired output is determined. The consequent parameters 

are found using the least-squares method. Then an error for each data pair is found. 

If this error is larger than the threshold value, then the premise parameters are 

updated using the gradient decent method (backpropagation).The process is 

terminated when the error becomes less than the threshold value. Then the 

checking data set is used to compare the model with actual system.  

 

Figure 3.15: ANFIS training proces 
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CHAPTER FOUR 

SIMULATION RESULTS AND DISCUSSION 

4.1 Simulation Results 
In this thesis studied about different method for speed control of PMDC motor. In 

order to validate the control strategies as described above, digital simulation were 

carried out on a PMDC motor drive system whose parameters are given in chapter 

three. We applied step input to three types of control systems (Fuzzy, PID and 

ANFIS). 

The open loop transfer function behavior of the PMDC motor to a unit step 

response is shown in Figure 4.1. It could be observed that the motor response to a 

unit step input signal, that is, an equivalent of 1V supply voltage is 0.1 rad/sec. 

This is one-tenth of the desired response. Also, the settling time is 3s of which a 

reduction is sought. Steady state error could also be improved. The response of 

motor speed with PID controller is shown in Figure 4.2.  Figure 4.3 shown 

response of motor speed to a unit step input with a fuzzy controller. Figure 4.4 

shows the response of the motor speed to a unit step input with a neuro-fuzzy 

controller. Figure 4.5 shows the response of motor speed to a unit step input with 

three different controllers from which it is clear that ANFIS controller performs 

slightly better than the other two controllers. 

4.2 Discussion 

Comparing the fuzzy and neuro-fuzzy controllers, the results show a slight change 

as shown in Figure. 4.3 and Figure. 4.4. In spite of the advantages in fuzzy control, 

the main limitations are the lack of a systematic design methodology and the 

difficulty in predicting stability and robustness of the controlled system. A trial-



and-error iterative approach is taken for the controller design due to which we get 

sluggish response. The neuro-fuzzy learning incorporates the architecture of neural 

network based fuzzy inference system. A given training data set is partitioned into 

a set of clusters based on subtractive clustering method. This is fast and robust 

method to generate the suitable initial membership functions and rule base. A 

fuzzy if-then rule is then extracted from each cluster to form a fuzzy rule base from 

which a fuzzy neural network is designed. Then a hybrid learning algorithm is used 

to refine the parameters of fuzzy rule base. 

 

Figure 4.1: Motor speed response without controller 



 

Figure 4.2:Motor speed response with PID controller 

 

Figure 4.3: Motor speed response with fuzzy controller 



 

Figure 4.4: Motor speed response with neuro fuzzy controller 

 

Figure 4.5: Motor speed response with three different controllers 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 
5.1 Conclusion  
This study is intended to demonstrate the successful application of adaptive neuro-

fuzzy controller, fuzzy logic controller and PID controllers for DC motor speed 

control. The MATLAB/SIMULINK model of the system under study with all three 

controllers is shown in Figures 3.3-3.6. The performances of these controllers are 

compared. Simulation results are presented and analyzed for all the controllers. It 

is observed that fuzzy logic based controller’s gives better responses than the 

traditional and the neuro-fuzzy controller give the best response. 

In the PID controller design a lots of attempts are needed to choose the right term, 

which gives a good response. Design with fuzzy controller gives perfect results, 

but also a trial-and-error method is needed to find the required parameters. Design 

with neuro-fuzzy controller reached a very good response and was very fast. The 

advantages of the neuro-fuzzy controller are that it determines the number of rules 

automatically, reduces computational time, learns faster and produces lower errors 

than other methods. With proper design a neuro-fuzzy controllers can replace PID 

and fuzzy controllers for the speed control of dc motor drives. From simulations, it 

is concluded that the use of ANFIS reduces design efforts and gives better results. 

5.2 Recommendations 
 MATLAB simulation for speed control of PMDC motor has been done which 

can be implemented in hardware to observe actual feasibility of the approach 

applied in this thesis. 

  This technique can be extended to other types of motors. 
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