

SUDAN UNIVERSITY OF SCIENCES & TECHNOLOGY

College of Graduate Studies

DEPARTMENT OF PLASTIC ENGINEERING

**IMPROVEMENT OF IMPACT PROPERTY
FOR POLYPROPYLENE BY MIXING WITH
LINEAR LOW DENSITY POLYETHYLENE**

تحسين خاصية الصدم للبولي بروبلين بخلطه مع البولي

اثلين الخطى منخفض الكثافه

A Thesis Submitted in Partial Fulfillment for the
Requirements for the Degree of Master of Plastic Engineering

Prepared by: Mayada Omer Ali Alsunny

Supervisor: Dr. Isam Abbakr Ishag

April 2014

الأُبَيَّه

قال تعالى:

لَهُ إِلَّا هُوَ الرَّحْمَنُ الرَّحِيمُ لَا تَأْخُذُهُ سِنَةٌ وَلَا نَوْمٌ لَهُ مَا فِي السَّمَاوَاتِ
أَوْ أَرْضٍ مَنْ فِي أَمَالَاتِهِ يَشْدُفُعُ عَنْ دَهْرٍ إِلَّا بِإِذْنِهِ أَيْدِيهِمْ وَمَا
لَا يُحِيطُونَ بِشَيْءٍ مِنْ عِلْمِهِ إِلَّا بِمَا شَاءَ وَسَعْ كُرْسِيُّهُ السَّمَاوَاتِ
الْأَرْضَ وَلَا يَؤُودُهُ حِفْظُهُمَا وَهُوَ الْعَلِيُّ عَظِيمٌ

صدق الله العظيم

Dedication

To our families who keep walking on the paths of tears for the sake of our success.

To our faculty and our teachers who taught us how to be our self.

To our friends who support us wherever we go.

ACKNOWLEDGEMENT

I do appreciate all those who supported us and made us able to finalize this research mainly (DR.ISAN ABBKAR) and thanks very much all others who devoted their

i would also like to thanks y husband alaa elidin abDeLMonieM Hamad for help and support at every time

i would also like us . Muhab salah aldien for help deranging every stage of tithe work.

efforts to assist us .

And we which this research becomes very

Fruitful and beneficial to all.

ABSTRACT

The research focused on how to improve one of the five large-volume polymeric families that belong to the commodity resins are: polyethylene (PE), polypropylenes (PP), styrene's (PS), acrylics (PMMA), and vinyl's (PVC) they represent 79% of all plastics. For many years, polypropylene (PP) has been very successfully used for blown film, injection molded, and extrusion applications. Although PP has a most remarkable combination of physical properties, it has poor impact strength especially at low temperature due to the inherently high glass transition temperature (Tg) and high crystalline.

Recently, the blending of PP with PE to provide improvements in its properties, especially in impact resistance at low temperatures and at any given stiffness, has been widely studied.

The effect of LLDPE on the mechanical properties of PP was investigated. The research have been made on the mechanical properties of linear low density polyethylene/polypropylene (LLDPE: PP) blend. Analysis has been also performed using Microsoft Word. Blend has been prepared by injection molding machine. The blend of ratio 30%LLDPE 70%PP shows superior impact strengths and increased mechanical properties.

المستخلص

يتركز البحث على كيفية تحسين واحد من الأكبر حجما من عائلة البلاستيك وهي بولي إيثيلين (PE) بولي بروبيلين (PP) بولي إستايرين (PS) أكريليك والفنيل.

وهي تمثل 79% من جميع أنواع البلاستيك المختلفة.

لسنوات عديدة تم استخدام البولي بروبيلين بنجاح في تصنيع الأفلام وتجهيز القوالب المصبوبة وعدة تطبيقات الحقن أخرى. مادة البولي بروبيلين لها عدة خصائص فزيائية حين تمزج بمواد آخر لها خاصية قوة تصدام ضعيفة خاصة عند درج الحرارة المرتفعة بسبب طبيعة درجة الحرارة الزجاجية العالية وإرتفاع حالة التبلر.

في الأونة الأخيرة تم خلط البولي بروبيلين والبولي إيثيلين مما أدى إلى تحسين خاص وعامة خاصية الصدم عند درج حرارة منخفضة.

في هذا البحث تم خلط البولي بروبيلين مع البولي إيثيلين لتحسين خصائص الأول الميكانيكية وتحديداً خاصية الصدم في درجة حرارة المنخفضة تم تحليل النتائج برنامج التحليل مليكرو سوفت ويرد.

تجهيز العينات تم بواسطة ماكينية الحقن بخلط نسبة 30% البولي إيثيلين منخفض الكثافة الخطية 70% البولي بروبيلين.

العينة المنتجة لهذه النسبة حققت خاصية صدم عالية وزيادة في الخصائص الميكانيكية.

Table of contents

Item	Page
الأبطة	I
الإهداء	II
Acknowledgment	III
Abstract	IV
المستخلص	V
Table of contents	VII
List of tables	VIII
List of figures	IX
Chapter One: Introduction	
1.1 Introduction	1
1.2 Objectives	2
1.3 Methodology	2
1.4 Boundaries	3
Chapter Two: Literature review	
2.1 Introduction	5
2.2 Polyethylene	6
2.3 Polypropylene	8
2.4 Mechanical property of pp	11
Chapter Three: Method and Material	
3.1 Introduction	17
3.2 Blending	18
3.3 Mechanical Tests	20
Chapter Four: Result and Discussion	

4.1 Introduction	28
4.2 Mechanical Tests	28
4.3 Cost Estimation	36
Chapter Five: Conclusion & Bibliography	
Conclusion	38
Bibliography	39

List of Tables

Table No	Table	Page
1	Specifications of Polypropylene	17
2	Specifications of Linear low density polyethylene.	18
3	Blend of PP&LLDPE Batches	18
4	Flexural Test of PP&LLDPE blend	28
5	Impact test of PP&LLDPE blend	30
6	Heat deflection temperature test of PP&LLDPE blend	32
7	Melt flow Index test of PP&LLDPE blend	34
8	Cost Estimation of PP&LLDPE blend	37

List of Figures

Figure	Page
--------	------

Figure 2.2 Polyethylene monomer	6
Figure 2.3 Propylene monomer	8
Figure 3.2 Injection molding machine.	19
Fig 3.3.1 Instrumented Flexural Test Device	20
Fig (3.3.2.1): Notch speed variation instrument	21
Fig (3.3.2.2) variation instrument	22
Fig (3.3.2.3): impact test sample	22
Figure (3.3.2.4): Resil Impactor machine	23
Fig (3.3.3.1): HDT.VICAT Instrument	24
Fig (3.3.3.2) heat deflection test sample	25
Fig(3.3.4.1) MFI insturement	26
fig(3.3.4.2) MFI sample	26
Fig 4.2.1 Flexural graph of PP/LLDPE blend	29
Fig(4.3.2)Impact graph of PP&LLDPE blend	31
Fig(4.2.3.3) HDT graph of PP&LLDPE blend	33
Fig (4.2.4.3) Melt flow Index graph of PP&LLDPE blend	35