

الآية

بسم الله الرحمن الرحيم

النَّهَارَ لَيَتَيْنِ ۖ فَمَحَوْنَا آيَةَ اللَّيْلِ ۖ وَجَعَلْنَا آيَةَ
آتَهُ لِتَبَدَّلُوا فَضْلًا ۖ مِنْ فَلِتَبَعِكُمْ ۚ وَعَدَدَ السَّرَّاَتِينَ
كُلُّ شَيْءٍ فَصَّلَّى لِنَاهٌ تَفْصِيلًا ۚ

سورة الاسراء (١٢)

DEDICATIONS

To my father and Mother

To my family

To students and engineers

To everyone can benefit from this research

ACKNOWLEDGEMENT

Thanks all thanks primarily to my father who has had the greatest role in my arrival to this degree. And thanks to my mother and family for their support to me through all my life. Many thanks go to the university administration because what did provide to us of chance and tender to obtain this degree .My thanks; gratitude and appreciation to my supervisor Dr. Awadalla Taifour for his support, assistance and guidance throughout the research. And thanks to my husband how is patronizing and support me to end this research, for him from me sincere thanks and gratitude.

ABSTRACT

Speed control of DC motor provides easy controllability and high performance; the most flexible control is obtained by means of separately excited DC Motor. Literature was reviewed of related study to understand the separately excited DC Motor and fuzzy logic. Mathematical and computer models of a DC motor and fuzzy logic were developed. MATLAB was used for system simulation.

The motor without controller gives unacceptable steady state error and gives slow settling time for the output time response. With PID controller gets slower settling time when load increase, the best choice for this motor is the fuzzy controller which has given good response after adjustment of its parameters.

مستخلص

يتم التحكم في محرك التيار المستمر لتسهيل التحكم وانتاج اداء العالي ويتم الحصول على تحكم أكثر مرونة عن طريق محرك التيار المستمر منفصل الاثارة. تم مراجعة دراسات مشابهة لفهم محرك التيار المستمر منفصل الاثارة و فهم المنطق الغامض. تم ايجاد نموذج رياضي و حسابي لمحرك التيار المستمر. استخدام برنامج الماتلاب لنموذج النظام.

المحرك بدون استخدام متحكم اعطى خطأ حالة مستقرة غير مقبول و اعطى زمن استقرار بطيء للاستجابة الزمنية للخرج. وفي حالة المتحكم التناصبي التفاضلي التكاملی تم الحصول على زمن استقرار ابطي عند زيادة الحمل، أفضل خيار لهذا المحرك هو المتحكم الغامض حيث أعطى إستجابة زمنية جيدة بعد أن تم ضبط معاملاته.

TABLE OF CONTENTS

PREFACE.....	Xv
CHAPTER ONE: INTRODUCTION	
1.1 Introduction.....	1
1.2 Statement of Problem.....	1
1.3 Objective.....	2
1.4 Methodology/Approach	2
1.5 Layout	2
CHAPTER TWO GENERAL OVERVIEW	
2.1 Introduction.....	3
2.2 DC Machines.....	3
2.2.1 Main Part of DC Machine.....	4
2.2.2 DC Machine Operation.....	5
2.3 DC Motor.....	6
2.3.1 Applications.....	6
2.3.2 Principle of Operation.....	6
2.3.3 DC Motor Method.....	7
2.4 Separately Excited DC Motors.....	7

2.4.1 Operation.....	8
2.4.2 Represent Equations.....	8
2.4.3 Torque Characteristic.....	9
2.4.4 Control of Speed.....	9
2.5 PID Control.....	11
2.5.1 The PID Controller Algorithm.....	12
2.5.2 Tuning of PID Parameters.....	13
2.6 Fuzzy Control.....	14
2.6.1 General Features.....	15
2.6.2 Fuzzy Inference Systems.....	16
2.6.3 Fuzzy Controller.....	16
2.6.4 Process of Developing a Fuzzy Expert System.....	23
2.6.5 Tuning Fuzzy Systems.....	24
2.7 Loads.....	24
2.7.1 Load Type.....	24
2.7.2 Overload Operation.....	26
CHAPTER THREE: CONTROL SYSTEM DESIGN	
3.1 Introduction.....	27

3.2 Separated Excited DC Motor Modeling.....	27
3.3 Controller design for motor speed control system.....	31
3.3.1 The Input and Output for the System.....	31
3.3.2 PID Controller Design.....	31
3.3.3 Design of Fuzzy Controller.....	33

CHAPTER FOUR: SIMULATION RESULTS AND DISCUSSIONS

4.1 Introduction.....	41
4.2 Motor Simulation Results without Controller	41
4.2.1 Result for motor response at no-load.....	42
4.2.2 Result of motor response at 75% of load.....	43
4.2. Result of motor response at Full Load	43
4.3 System Simulation Results with PID Controller	44
4.3.1 System result with PID controller at no-Load	44
4.3.2 System result with PID controller at 75% of Load	44
4.3.3 System result with PID controller at full load.....	44
4.4 System Simulation Result with Fuzzy Controller	47
4.4.1 System result with PID controller at no-load	47
4.4.2 System result with PID controller at 75% of load	48
4.4.3 System Result with PID controller at full load.....	48

4.5 Results Comparison and Discussions	50
--	----

CHAPTER FIVE: CONCLUSION

Conclusion.....	54
-----------------	----

Recommends	54
------------------	----

REFERENCES.....	55
-----------------	----

LIST OF FIGURES

Figure	Title	Page
2.1	DC machine	4
2.2	Motor and generator action	5
2.3	DC motor connections	8
2.4	Separately excited dc motor	8
2.5	Torque characteristic	10
2.6	Different speeds for different voltage	10
2.7	Solid-state controlled rectifier with the field fed from an uncontrolled rectifier	10
2.8	The block diagram of the PID controller.	12
2.9	Fuzzy controller	17
2.10	The basic structure of fuzzy logic based controller.	18
2.11	Membership functions	20
2.12	The time responses of error and error change for a generalized second order	21
2.13	Membership functions used to represent fuzzy partitioning in the universe of Δu .	22
2.14	Constant torque load	25
2.15	Variable torque load	26
2.16	Constant horsepower operation	26
3.1	Equivalent circuit of a separately exited DC Motor	28
3.2	Block diagram of separately excited DC motor	30
3.3	Block diagram of separately excited DC motor with load	30
3.4	Model of the PID controller	32
3.5	PID controller	32
3.6	Fuzzy controller for a DC motor system	33

Figure	Title	Page
3.7	Fuzzy inference system editor in the fuzzy logic Toolbox	35
3.8	Membership function editor (error)	36
3.9	Membership function editor (change in error)	37
3.10	Membership function editor for output	37
3.11	Graphical rule editor in the fuzzy logic Toolbox	38
3.12	Rule viewer in the fuzzy logic Toolbox	39
3.13	Surface viewer in the fuzzy logic Toolbox	40
4.1	Separately excited DC motor Simulink diagram	41
4.2	Simulink diagram of the system in no-load without control	42
4.3	Unit step response of the system in no-load	42
4.4	Simulink diagram of the system in 75% of load without system control	43
4.5	Unit step response of the system in 75% of load without system control	43
4.6	Unit step response of the system in full load without system control	44
4.7	Simulink diagram of the system in no-load with PID system control	45
4.8	Unit step response of the system in 75% of load with PID control system	45
4.9	Unit step response of the system in no-load with PID control system	46
4.10	Unit step response of the system in full load with PID control system	46
4.11	Simulink diagram of the system in no-load with fuzzy system control	47
4.12	Unit step response of the system in no-load with fuzzy control system	47

Figure	Title	Page
4.13	Unit step response of the system in 75% of load with fuzzy control system	48
4.14	Unit step response of the motor in full load with fuzzy control system	48
4.15	Control signal of the fuzzy controller for separately excited DC motor control system	49
4.16	Control signal of PID controller for separately excited DC motor control system	49
4.17	Outputs signal of the system in no-load	50
4.18	Outputs signal of the system in 75% of load	50
4.19	Outputs signal of the system in full-load	51

LIST OF TABLES

Table	Title	Page
2.1	Ziegler-Nichols tuning parameters	14
2.2	Internal model control (IMC) tuning parameters	15
3.1	Rule base for separated excited DC motor speed control	38
4.1	Rise time comparison	51
4.2	Settling time comparison	52
4.3	Steady state error comparison	52
4.4	Peak overshoot comparison	52

LIST OF ABBREVIATIONS

AC	Alternating Current
DC	Direct Current
EMF	Electro Motive Force
FIS	Fuzzy Inference System
FL	Fuzzy Logic
FLC	Fuzzy Logic Controller
FLS	Fuzzy Logic System
GUI	Graphical User Interface
MATLAB	Matrix Laboratory
MMF	Magnetic Motive Force
PID	Proportional Integral Derivative

LIST OF SYMBOLS

T_L	Load torque
T_d	developed torque
I_f	field current
I_a	armature current
v_a	armature voltage
R_a	armature resistance
L_a	armature inductance
W	angular speed
J_m	rotor inertia
B_m	viscous friction coefficient
K_T	torque constant
K_b	back EMF constant
ϕ	Magnetic flux
K_p	proportional gain
T_i	integral time constant
T_D	derivative time constant
K_i	integral gain
K_d	derivative gain
K_u	ultimate gain
T_u	ultimate period
k	static gain
τ	time constant
θ	time delay
K_I	integral constant
T_s	sampling period
C_e	change in error