الآية

قال تعالى : (وقل ربي زدني علما)

حدق الله العظيم

DEDICATION

Dedicated

To

My family

Who have always supported me in all my endeavors...

ACKNOWLEDGEMENT

Truly speaking I believe, that just a mere "thank I" don't do proper justice to people contribution towards most of the endeavors. But usually, that remains the only thing I can offer, not just to acknowledge their efforts but also to pacify our consciences.

The most important thing I learn or try to learn over my life is how to think in simpler ways. I believe the man who epitomizes this process is my guide Dr. Nagm Aldin Abdo. I was amazed to watch him think from the very basic and sort out complicated issues in very logical ways.

I would also like to express gratitude to all staff of school of electrical and nuclear.

Abstract

In remote locations/rural areas where transmission cost is very high a self excited induction generator driven by micro-hydro turbine can be installed easily and economically.

To excite the generator, external reactive supply can be supplied from the grid or from the externally connected capacitor bank.

In this thesis, a two identical induction generators excited with symmetrical capacitor bank are use. The generators are driven by micro-hydro turbine. These induction generators supply a pure resistive load in isolated area.

PID controller is used to reduce the oscillation during the transient fault and also to improve the steady state response. The complete model is developed and simulated using MATLAB/Simulink software.

The simulation is carried out for steady-state and transient operation. The results are obtained and discussed.

المستخلص:

يستخدم نظام توليد الكهرباء باستخدام المولدات الحثية المثارة ذاتيا والمدارة بواسطة نظام التوربينة الهيدر وليكية في المناطق المفصولة عن الشبكة القومية للكهرباء وذلك لمزايه الاقتصادية . تتم اثارة المولدات الحثية اما بواسطة تغذيتها من الشبكة او بواسطة مكثفات خارجية.

في هذا البحث تم استخدام مولدين حثيين متماثلين تمت اثارتهما بواسطة مكثفات. هذه المولدات تمت ادارتها بواسطة توربينات هيدروليكية و تمت تغذية حمل مقاومي . تم استخدام متحكم تناسبي تكاملي تفاضلي (PID Controller) لتقليل التذبذب اثناء الاعطال العابرة وايضا لتحسين الاستجابة في الحالة المستقرة . تم استخدام برنامج المحاكاة النموذج المكتمل . MATLAB/Simulink

تم توضيح عمل المولدات الحثية اثناء الحالة المستقرة والحالة العابرة بواسطة المحاكاة. وتمت مناقشة ودراسة النتائج.

List of Figures

Figure No	Title	Page
Figure 2.1	Grid connected induction generator	12
Figure 2.2	Self-excited induction generator	13
Figure 2.3	Per-phase equivalent circuit of the stand-alone induction	13
	generator	
Figure 2.4	phasor diagram of SEIG with resistive load	15
Figure 3.1	The three phase windings of induction generator	18
Figure 3.2	d-q representation of self excited induction generator	27
	(SEIG) with capacitor	
Figure 3.3	Detailed d-q model of SEIG in stationary reference frame	29
	(a) q- axis circuit (b) d- axis circuit	
Figure 3.4	Loop impedance method	30
Figure 3.5	Nodal analysis method	31
Figure 3.6	A typical control system of hydraulic plant	34
Figure 3.7	Mathematical model of hydraulic turbine	35
Figure 3.8	Governor with transient droop compensation	36
Figure 3.9	Models of MHP plant using servomotor as governor with	36
	PID-Controller	
Figure 3.10	Simulink model of PID-Controller	37
Figure 4.1	Matlab simulation model of SEIG	40
Figure 4.2	The Output Voltage of SEIG	41
Figure 4.3	The Output Current of SEIG	42
Figure 4.4	Generated Power by Machine 1	42
Figure 4.5	Generated Power by Machine 2	43
Figure 4.6	The Power transferred to load	43
Figure 4.7	The Rotor Speed of SEIG	44

Figure 4.8	The Output Current of generator 2	45
Figure 4.9	The Output Voltage of generator 2	45
Figure 4.10	Generated Power by generator 2	46
Figure 4.11	Generated Power by generator 1	47
Figure 4.12	Power transferred to Load	48
Figure 4.13	Rotor Speed of generator 1	48

List of Tables

Figure No	Title	Page
Table 4.1	parameters of the two induction generators	38
Table 4.2	parameters of Turbine and Governor	39
Table 4.3	PID Data	39

List of symbol

SEIG	Self- Excited Induction Generator
V_{nom}	Rated voltage
I_{nom}	Rated Current
M	Mutual inductance
L_S	Self-inductance of stator
L_r	Self-inductance of rotor
θ	Angular position between the rotor and stator
Θ ₂	Θ - $2\pi/3$
θ ₃	Θ - $4\pi/3$
R_S	Resistance of the stator
R_r	Resistance of the rotor
ω_m	Mechanical angular speed
$\omega_{\scriptscriptstyle S}$	Synchronous angular speed
J	Inertia moment
T_e	Electromagnetic torque
T_m	Mechanical torque
T_a	The constant time of servo motor
K_a	The gain of servo motor
g_{min} and g_{max}	Minimum and maximum of gate opining limits
R_p	The permanent droop
PID	proportional integral and derivative
K_p	Proportional gain of permanent droop
K_i	The integral gain
K_d	The derivative gain
P	d/dt

β	Damping coefficient
T_{w}	Water starting time
W_{ref}	Reference speed
P_{ref}	Reference mechanical power
P_0	Machine actual electrical power