

... To my father
... To my mother
... To my family
... To all my friends

.Ishag July 2006

Acknowledgment

Thanks to my god before and after and greater thanks to Dr.salah for this supervision and guidance for this work. My thanks also extended to ustaz Jone Jurge and Dr.Isam for their assistance and providence of all physical resources and to all those who has offer any unseen helping.

خلاصة:

اثناء العمليات المختلفة فى اقسام العزل والفسيج يتم سحب الخيط من البكرة الثابتة

بسرعة محددة فان الجزء من الخيط بين البكرة ووجه الخيط يدور حول محور البكرة بسرعة زاوية مما يجعل الخيط يتبع عن البكرة مكونا مايعرف بالبالون . حجم وشكل البالون يؤثر على شد الخيط المسحوب من البكرة مما يتيح عنه بعض المشاكل التي تؤدى الى عدم انتظامية المتنج وبعض العيوب . في هذه الدراسة تم توضيح طرق سحب الخيط من البكرة – القوى المؤثرة على البالون . تم اجراء اختبارات عملية مفصلة توضح كيف يتغير قطر بالون الخيط اثناء عملية سحب الخيط من البكرة مع المتغيرات الآتية:

- المسافة بين دليل الخيط وقاعدة البكرة
- زاوية البكرة المستخدمة
- قطر بكرة الخيط
- شدد التدوير
- نمرة الخيط

سرعة سحب الخيط من البكرة -

خلصت الدراسة الى ان العوامل اعلاه تؤثر على قطر البالون مما يؤثر على الشد واوضحت الدراسة انه لكي يتم تقليل الزيادة فى قطر البالون يجب ان يكون دليل الخيط فى نقطة اعلى من نقطة قمة الارتفاع للبكرة مع الاخذ فى الاعتبار تغير قطر البكرة اثناء سحب الخيط الذى يتيح عنه تغيير فى نقطة قمة الارتفاع .

Abstract:

During different manufacturing processes as the yarn drawn forward at a certain linear velocity, the portion of the yarn between the package and guide eye necessarily attain an angular velocity, through it is rotation about the package axis which causes the yarn to fly out and form characteristic balloon. This affect the tension in the yarn as it is passes through the guide and this affect the product quality and causes some problems during the process. This project explains the three modes of unwinding, balloon physics and show that factors affect the balloon diameter are:

- Guide distance.
- Cone angle.
- Package diameter.
- Winding tension.
- Yarn count.
- Unwinding speed.

List of content:

	Title	Page
	Dedication	I
	Acknowledgement	II
	Arabic Abstract	III
	English Abstract	IV
	List of content	V
	List of tables	VII
	List of figures	VIII
	Chapter (1) Introduction	
1.1	Background.	1
1.2	Objective	4
	Chapter (2) Balloon physics	
2.1	Unwinding	5
2.2	winding of yarns in spinning and uptwisting	5
2.3	Brief history	6
2.4	Physics of yarn ballooning (based on Debar's paper)	8
2.5	Forces acting in absence of drag and with out movement of the yarn along its length	8
2.6	Effect of air drag	11
2.7	Effect of movement of the yarn along its length	13
2.8	Summary of balloon physic	22
2.8.1	Spinning and doubling	22
2.8.2	Winding off a Stationery Package	22
2.8.3	Uptwisting	23
	Chapter (3) Experimental work	
3.1	Equipment	24
3.1.1	Machine used	24
3.1.2	Material used	24
3.1.3	Packages used	24
3.2	Experimental conditions	24
3.2.1	Measuring of winding tension	24
3.2.2	Measurement of balloon radius	25
3.2.3	Measurement of guide distance	25
	Chapter (4) Result and discussion	
4.1	The effect of yarn count	26
4.2	The effect of yarn speed	27
4.3	Unwinding yarn from a point below the apex height	28
4.3.1	The effect of guide distance	28
4.3.2	The effect of package size	29

4.3.3	The effect of cone angle	30
4.3.4	The effect of winding tension	31
4.3.5	The effect of yarn count	32
4.3.6	The effect of yarn speed	34
Chapter (5) Conclusion		
5.0	Conclusion	36
	References	38

List of tables:

	Title	Page
2.1	Processing Conditions	21
2.2	Approximate maximum forces (g wt.) on a 1 cm length of yarn of 60 Tex ($m = 6 \times 10^{-4}$ g per cm).	21
2.3	Approximate maximum forces (g wt.) on a 1 cm length of yarn of 6 Tex ($m = 6 \times 10^{-5}$ g per cm).	22
4.1	Effect of yarn count on balloon radius for yarns unwound freely from the package	26
4.2	Effect of yarn speed on balloon radius for yarns unwound freely from the package	27
4.3	Effect of guide distance on balloon radius for(yarn ballooning)	28
4.4	Effect of package size on balloon radius for(yarn ballooning)	29
4.5	Effect of guide distance on balloon radius for different cone angles for(yarn ballooning).	30
4.6	Effect of guide distance on balloon radius for different winding tensions packages for (yarn ballooning)	32
4.7	Effect of guide distance on balloon radius for different yarn counts.	33
4.8	Effect of guide distance on balloon radius for different yarn speeds.	34

List of figures:

	Title	Page
1.1	Diagrammatic representation of yarn unwinding freely from a package	2
1.2	Diagrammatic representation of a yarn ballooning	3
1.3	Diagrammatic representation of yarn dragging off from a package	3
2.1	Stationery packages	5
2.2	Mass rotating about its axis	8
2.3	Centripetal force	10
2.4	The effect of air drags	12
2.5	Coriolis forces	14
2.6	The magnitude of Coriolis forces	15
2.7	Direction of Coriolis force in uptwisting and winding	17
2.8	Direction of Coriolis force in spinning and doubling	18
3.1	Mechanism used to measured balloon radius and guide distance	25
4.1	The effect of yarn count on balloon radius	26
4.2	Effect of yarn speed on balloon radius	27
4.3	Effect of guide distance on balloon radius	29
4.4	Effect of guide distance on balloon radius for different package sizes. (Yarn ballooning).	30
4.5	The effect of guide distance on balloon radius for different cone angles	31
4.6	The effect of guide distance on balloon radius for different winding tensions	32
4.7	The effect guide distance on balloon radius for different yarn counts	33
4.8	(Ballooning) Relation between $\Delta R/\Delta Z$ and yarn count.	34
4.9	the effect guide distance on balloon radius for different yarn speeds	35
4.10	The relation between $\Delta R/\Delta Z$ and yarn speed. (V^2)	35