

P₂ P₄

بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Graduate Studies

Factors Affecting Discharge Coefficient of Cooled Industrial Burners

**Thesis Submitted in Partial Fulfillment for the requirement of
the degree of M.Sc in Mechanical Engineering**

Prepared by:

Eng. Mohyedin Ahmed Abdel ghadir

Supervised by:

Prof. Dr. U. S. Abdulhussain

August 2005

Verse

-: قال تعالى

"وَقُلْ رَبُّ زَدْنِي عِلْمًا"

صَقْ لِلَّهِ الْعَظِيمِ

(سورة طه) 114

Dedication

To my Mother, Father's soul and Wife
to my all Family and teachers

Acknowledgements

Indeed my thanks and appreciations to supervisor , **Prof. Dr. U. S. Abdulhussain** for his unlimited and valuable Information and guidance. Also my regards to Sudan University of science and technology (Department of Mechanical Engineering) .Finally my thanks to all teachers and technical staff who are behind achievements.

Eng. Mohyedin Ahmed

Abstract:

Experimental investigation was made to determine pressure loss coefficient of different types of burners used in industrial combustion applications. Tests were carried out to study the influence of burner geometry and flow variables on pressure loss coefficient, such Reynolds number, porosity, length/diameter ratio, number of holes. The results showed a reasonable agreement when compared with Data obtained by others .

IV

الخلاصة:

تم اجراء تجرب لایجاد معلم التصريف لانواع مختلفة من المحرارق

المستخدمة في التطبيقات الصناعية وتأثير متغيرات الجرين مثل رقم رينولز؛
النفاذية؛ نسبة الطول/القطر وعدد الثقوب على معامل التصريف. أظهرت النتائج
توافق معقول عند مقارنتها مع نتائج لباحثين آخرين لتطبيقات أخرى.

V

Contents

Verse	I
Dedication	II

Acknowledgement	III
Abstract	IV
Contents	VI
Nomenclature	IX
List of Figures	X

Chapter One

Introduction

1-1: Introduction	1
1-2: Project Objective	2

Chapter Two

Operational Factor Affect flame stabilizer discharge coefficient

2-1: Introduction	3
-------------------	---

Chapter Three

Design of the test rig and Experimental Equipment

3-1: Design test rig	10
3-2: Experimental Equipment	11
3-2-1: Venturi meter	11
3-2-2: Manometer	12

3-2-3: Orifice plates	15
3-2-3-1: Sizing the orifice plate	15
3-2-3-2: Orifice plate types and selection	18
3-2-3-3: Orifice plate performance	20
3-2-4: Blower	21

Chapter Four

Theoretical Approach

4-1: Calculation of Air mass flow	24
4-1-1: Venturi meter	26
4-1-2: Orifice plate	29
4-2: Jet Mix pressure Drop and Discharge coefficient	31
4-3: Discharge coefficient	32
4-4: Correction of the pressure Drop to reference Mach number	33
4-5: Calculation of Reynolds number	34

Chapter Five

Experimental Procedure and Results

5-1: Experimental Procedure	35
5-2: Experimental Results	37
5-2-1: Influence of Reynolds number	39
5-2-2: Influence of Porosity	39
5-2-3: Influence of Pressure loss	40
5-2-4: Influence of Wall Thickness / Diameter (L/D) ratio	40
5-2-5: Influence of Number of holes	41
5-3: Comparison of Results	41

Chapter Six

Conclusions & Suggestions for future work

6-1: Conclusions	58
6-2: Suggestions for future work	58

Appendix

Tables of Results

61

VIII

Nomenclature

Symbol	Quantity	Coherent SI Unit
ΔP	Total pressure drop	N/m^2
u	Velocity of air	m/s
R	Constant of gas	Kj/kgk
T	Ambient temperature	K
A_1	Area of pipe	m^2

A_2	Area of orifice plate	m^2
M	Mach number	-
ρ	Density of air	Kg/m^3
C_d	Discharge coefficient	-
ϵ	Expansibility factor	-
C_p	Specific heat at constant pressure	Kj/kgk
C_v	Specific heat at constant volume	Kj/kgk
r	Ratio of the absolute pressure	-
v_c	Velocity of vena contracta	m/s
A_c	Area of vena contracta	m^2
D	Diameter of pipe	m
μ	Viscosity of air	Kg/ms
m_1	Venturi meter mass flow rate	Kg/s
m_2	Orifice plate mass flow rate	Kg/s
H_1	Different Pressure head at venturi meter	m
H_2	Different Pressure head at orifice plate	m
a	speed of sound	m/s
m	Actual air mass flow	Kg/s
N	Engineering unit conversion factor	-
q	Mass – based flow rate	m^3/s
d	Orifice bore diameter	m
Z	Correction factor	-
β	Diameter ratio	-

IX

List of Figures

Figure (3-1) General layout of the rig test.	10
Figure (3-2) Venturi meter operations.	11
Figures (3-3)6-3 — Manometer operations.	13
Figure (3-7) Orifice plate operations.	15
Figure (3-8) For blower wheel	21

Figure (4-1) Calibration venturi meter flow rate.	28
Figure (5-1) Shows flow regimes associated with orifice plate of different thickness.	38
Figure (5-2) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 2.7 mm and 1 hole.	42
Figure (5-3) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 5.2 mm and 1 hole.	43
Figure (5-4) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 2.7 mm and 4 hole.	44
Figure (5-5) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 5.2 mm and 4 hole.	45
Figure (5-6) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 2.7 mm and 8 hole.	46
Figure (5-7) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 5.2 mm and 8 hole.	47
Figure (5-8) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 2.7 mm and 16 hole.	48
Figure (5-9) Discharge coefficient VS Reynolds for different pressure loss burner (without, and with Flame Tube) at thickness 5.2 mm and 16 hole.	49

X

Figure (5-10) Discharge coefficient VS Area ratio when combustor tube (ON) and (OFF), Thickness 2.7 mm, 5.2 mm.	50
Figure (5-11) Discharge coefficient VS Area ratio for different types of burners, Thickness 2.7 mm, 5.2 mm.	51
Figure (5-12) Discharge coefficient VS Pressure loss for different types of burners, Thickness 2.7 mm, 5.2 mm.	52

Figure (5-13) Discharge coefficient VS L/D ratio for the same area ratio.	53
Figure (5-14) Discharge coefficient VS L/D ratio for the same number of holes.	53
Figure (5-15) Discharge coefficient VS different number of holes for different pressure loss burners.	54
Figures (5 – 16), (5 – 17) and (5 – 18) Discharge coefficient VS Reynolds number, pressure loss, area ratio, No. of holes, and L/D ratio (comparison data)	55