

Sudan University of Science & Technology

College of Graduate studies

Voltage Control Using Static Var System (SVS)

A Thesis

Submitted In Partial
Fulfillment For The
Requirements For The
Degree Of Master Of Science
In Electrical Engineering
(Power

Prepared by:

Mansour Babiker Idris

Supervisor:

Ust. Khamis Arbeesh Saad Eldin

June 2006

Abstract

Voltage is mainly controlled by controlling reactive power flow through the transmission line. The flow of reactive power is controlled by means of reactive power compensation (supplying or absorbing).

Conventional methods for this compensation are excitation control, saturated reactor , tap changing transformers, series capacitors, shunt reactors, synchronous condensers and shunt capacitors. Here a fast step less variable method for reactive power compensation known as static var system (SVS) is discussed as a new method.

The construction, performance, control system , application and mathematical model of SVS are discussed. Never-the-less , static var compensator for a low voltage distribution system in Port-Sudan area is reviewed .

ملخص

يتم التحكم في الجهد بواسطة التحكم في سريان القدرة غير الفعالة في خطوط النقل .
الطرق التقليدية المستخدمة في عملية تعويض القدرة غير الفعالة هي التحكم في التغذية ، مكثفات التوالي ، المفاعلات المتسبعة ، المكثفات المترادفة ، مفاعلات التوازي ومكثفات التوازي .

أما الطريقة الجديدة في عملية التعويض هذه فتعرف بالمعوضات الساكنة وهي تمثل موضوع هذا البحث . حيث سيتم مناقشة تركيب ، أداء ، نظام التحكم بالإضافة إلى تطبيقات هذه المعوضات . كما سيتم شرح تطبيق المعوضات الساكنة في أحد مغذيات الجهد المنخفض في مدينة بورتسودان يعرف بالمغذي الجديد .

Connects
Chapter One
Background

1–1 Introduction	1
1–2 Reasons of voltage variation in the power system	2
1–3 Effect of voltage variation in the power system	2
1–4 Production and absorption of reactive power	3
1.4.1 Overhead lines	3
1.4.2 Under ground cables	3
1.4.3 Transformers	3
1.4.4 Loads	3
1.4.5 Compensating devices	4
1–5 Effect of reactive power flow on the voltage of transmission line	4

Chapter Two

Conventional methods of voltage control

2-1 Excitation control and voltage regulation of generators	5
2-2 Tap- changing transformers	5
2-3 Shunt reactors	6
2-4 Shunt capacitors	6
2-5 Synchronous condensers	7
2-6 Series capacitors	7
2-7 Saturated Reactors	8
2.7.1 Single phase self saturated reactors	8
2.7.2 Star connected saturated reactors	10
2.7.3 Double star connected reactors	10
2.7.4 Treble star connected reactors	11
2.7.5 Transductor type of saturated reactors	12

Chapter Three

Static Var System (SVS)

3–1 Characteristic of ideal SVS	14
3–2 Characteristic of realistic SVS	15
3–3 Power system characteristic	15
3–4 Composite SVS & power system	16
3–5 Effect of using switched capacitors	17
3–6 Element of the SVS	18
3.6.1 Thyristor controlled reactor TCR	19
3.6.2 Thyristor switched capacitor TSC	23
3.6.3 Mechanically switched capacitor MSC	25
3–7 Practical Static Var System	25
3.7.1 Harmonic filters	26
3–8 Application of SVS	26
3–9 Control system for SVS	27
3.9.1 Automatic voltage regulator (AVR)	27

Chapter Four

Mathematical model of SVS

4 – 1 Representation of SVS in power flow studies	29
4 – 2 Functional block diagram representation of SVS	30
4.2.1 Model of TCR block diagram	30
4.2.2 Voltage regulator models	31
4.2.3 The measuring circuit block	32
4.2.4 The capacitor switching logic	32
4 – 3 Combined TCR and TSC representation	33

Chapter Five

Calculation of SVS reactive power & practical application of SVS in Port-Sudan network

5–1 Long line model	34
5–2 Calculation of reactor reactive power Q_L	35
5–3 Calculation of capacitor reactive power Q_C	36
5–4 Application of SVS to a low voltage distribution feeder in Port-Sudan	37
5.4.1 Introduction	37
5.4.2 Design of the reactor	38
5.4.2 Design of the capacitor	39
5–5 Design of the filter circuit for the above SVS	40
5.5.1 Filter for fifth harmonic	40
5.5.2 Filter for seventh harmonic	41

Chapter Six

Discussion and Recommendation

6-1 Discussion	43
6-2 Recommendation	43
- References	44
- Appendix	46
* Reference values of voltage limits in Ac network	46
* Standard capacitor units available commercially (out door and indoor units)	47
* Standard rating of shunt capacitor bank	48