

Sudan University of Science and Technology

FACULTY OF ENGINEERING

**APPLICATION OF GIS ON GEZIRA SCHEME AND MANAGIL
EXTENSION**

تطبيق نظم المعلومات الجغرافية على مشروع الجزيرة

A thesis presented for the degree of

M.Sc. in Surveying Engineering

By

Fatah Elrhman Rizigalla Mohammed

(**B.Sc.** in Surveying Engineering (First Class Honor

July 2009

بسم الله الرحمن الرحيم
(وما أُوتِيَتْ مِنَ الْعِلْمِ إِلَّا قَلِيلًا)

صدق الله العظيم
الآية (85) سورة الإسراء

DEDICATION

Dedicated

To my father,

The first one who taught me a letter.

To my mother,

From whom I knew the meaning of life.

No less worthy of my dedication are my colleagues the officials and

Workers at the ministry of irrigation.

To whom eager to learn could I have dedicated this documentary

Last but not least to my little family whom I love.

ACKNOWLEDGEMENT

My primary thanks to alla, the most beneficent, and the most merciful. My compliments to my supervisors, Dr.Nagi Zumrawi (Sudan University of Sciences and Technology), and Dr. Abed alla Elhagwa (Agricultural Research Corporation).Thanks to prof.Ali Elgak for this help, advices, and encouragement through this research work (Head of Horticultural Department Gezira University).Iam grateful to all who helped me to complete this research, particularly the Ministry of Irrigation, Sudan Gezira Board and Gezira University.

APSTRACT

The purpose of this research is to establish a solid base for building up information system which will support decision making and planning polices for Gezira scheme.

Along with the conventional techniques (GIS) has been extensively utilized in different objectives or in regional development.

The utilization of GIS can assist in decision making, planning and developing Gezira scheme and Managil extension. In this study GIS had been applied on the following

- Connect geometric location with attribute information of blocs of the scheme.
- Determining suitable blocs can be cultivated by different crops depending up on soil components.
- Selecting good blocs according to their location with respect to the main roads in the scheme.
- Producing many layers for different purpose.
- Considering towns of the scheme as factor of differentiation for selecting best blocks.
- Supplying different administrations in the scheme by required information.
- Buffering suitable areas of groups in the scheme to assist in studies and investment.
- Shows the ability of (GIS) to assist in decision making in the field of developing and agricultural planning for the scheme.
- To produce digital maps quickly with low cost.
- Distinguishing between different geographic features in the scheme by means of graduation of colors.

- Windowing the descriptive information of the blocks of the scheme.
- Producing statistical tables for soil components in salinity and sodicity.

The results of this research include after capturing detailed soil, information of data base that can be used for the determination of suitable areas for the growing of different crops according to soil components in salinity and sodicity with the crops requirements. Maps on scale 1:2000000 with 50 kilometers interval grid lines had been produced to provide location information beside tabular data for supplying descriptive information for the different geographic features as roads, towns, blocks, and the groups of the scheme. Moreover thematic maps for cultivated crops. The most operations of cultivation in the scheme had been in autumn season, there for the transportation is main problem, the asphalt roads and the embankments are considered as first factor of differentiation which applied to suitable areas to obtain good areas, and hence for obtaining the best areas by considering the towns of the scheme as the second factor of differentiation. Each feature class comprises the entire pertinent maps and attributes data ready for supplying decision maker by information as required in the field of developing and planning the schemes.

LIST OF CONTENTS

CHAPTER 1 INTPRODUCTION

1. 1 Overview.	1
1. 2 Objectives	1
1. 3 Thesis layout	2

CHAPTER 2 THE GEZIRA SCHEME

2.1 Life of the Gezira before the scheme	4
2.2 Tayba pilot scheme and the beginning	6
2.2.1 Extension in Tayba.	6
2.2.2 The loan , the dam and the Gezira scheme	7
2.2.3 Impact of the First World War on the Gezira scheme .	8
2.2.4 The repercussion of 1924 events	9
2.2.5 The Nile water agreement of 1929.	9
2.3 The topography	12
2.4 The geology.	12
2.4.1 The basement complex rocks	12
2.4.2 The Nubian sand stones.	12
2.4.3 The Gezira formation	12
2.5 The climate.	12
2.6 Irrigation system.	13
2.7 The management in Gezira scheme	15
2.8 The ownership	15
2.9 The agricultural rotation	17
2.9 .1 First rotation	17
2.9.2 Second rotation	18
2.9.3 Third rotation	19
2.9.4 Fourth rotation	19
2.9.5 Fifth rotation	20
2.9.6 Six rotation	20

CHAPTER 3 TECHNOLOGY

3.1 Introduction	21
3.2 Components of GIS	22
3.2.1 Hardware	23
3.2.2 Software	23
3.2.2.1 Data input	24
3.2.2.2 Data output	24
3.3 Data	24
3.4 Procedure	26
3.5 People	26
3.6 Function of GIS	27
3.7 Application of GIS	27
3.8 Data modeling	27

3.8.1 Raster	28
3.8.2 Vector	28
3.9 Data analysis	28
CHAPTER 4 GIS MODEL DEVELOPMENT	
4.1 Introduction	30
4.2 Methodologies	30
4.2.1 Water resources	33
4.2.2 Soil components	35
4.2.2.1 Physical characteristics	35
4.2.2.2 Chemical characteristics	36
4.2.2.3 Map units	38
4.2.3 Blocks of the scheme	40
4.2.4 Groups of the scheme	46
4.2.5 Transportation	49
4.2.5.1 Railways	49
4.2.5.2 Roads	49
4.2.6 Towns of the scheme	49
4.2.7 Canalizations	52
4.2.8 Areas of the scheme	53
4.3 Map projections	56
4.4 Data acquisition	56
4.4.1 Raster	56
4.4.2 Vector	57
4.4.3 Scanning	57
4.4.4 Digitizing	57
4.4.5 Transportation	59
4.5 Building up data model	60
4.5.1 Soil types of blocks	60
4.5.2 Crop requirements	63
CHAPTER 5 ANALYSIS AND RESULTS	
5.1 Analysis	64
5.1.2 Introduction	64
5.1.2 Spatial analysis	65
5.1.3 Statistical analysis	68
5.1.4 The output product	69
5.2 Results	70
5.2.1 Introduction	70
5.2.2 Agricultural crops	70
5.2.2.1 Cotton crop	72
5.2.2.2 Group sorghum	80
5.2.2.3 Group wheat	89
5.2.2.4 Vegetables	98
5.2.2.5 Group maize	107
5.2.2.6 Millets	118
5.2.2.7 Sugar cane crop	125
5.2.2.8 Acacia crop	134

CHAPTER6 CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusion	144
6.2 Recommendations	147
References	148
Appendix	150

List of tables

	Page
2.1 Rates of distribution.	10
2.2 Pump irrigation	10
2.3 Total credit of 922million cubic meters	11
2.4 Three courses rotation 2.5 four course rotation	18
2.5 Four course rotation	19
4.1 Soil components	38
4.2 Non- spatial data	40
4.3 Groups of the scheme	46
4.4 Maximum demand factor	52
4.5 Distributions of investigated blocks	60
4.6 Properties on investigated blocks	61
4.7 Crop requirements	63
5.1 Attributes of suitable blocks for cotton crop	72
5.2 Attributes of good blocks for cotton crop	75
5.3 Attributes of best blocks for cotton crop	77
5.4 Attributes of suitable groups for cotton crop	77
5.5 Attributes of suitable blocks for sorghum crop	80
5.6 Attributes of good blocks for sorghum	83
5.7 Attributes of best blocks for sorghum crop	85
5.8 Attributes of suitable blocks for wheat crop	87
5.9 Attributes of suitable blocks for wheat crop	89
5.10 Attributes of good blocks for wheat crop	92
5.11 Attributes of best block for wheat crop	94
5.12 Attributes of suitable groups for wheat crop	96
5.13 Attributes of suitable blocks for vegetables	98
5.14 Attributes of good blocks for vegetables	101
5.15 Attributes of best blocks for vegetables	103

5.16 Attributes of suitable groups for vegetables	104
5.17 Attributes of suitable blocks for maize crop	107
5.18 Attributes of good blocks for maize crop	110
5.19 Attributes of best blocks for maize crop	112
5.20 Attributes of suitable groups for maize crop	113
5.21 Attributes of suitable blocks for millets	116
5.22 Attributes of suitable for millets	119
5.23 Attributes of best blocks for millets	121
5.24 Attributes of suitable groups for millets	122
5.25 Attributes of suitable blocks for sugar cane crop	125
5.26 Attributes of good blocks for sugar cane crop	128
5.27 Attributes of best blocks for sugar cane crop	130
5.28 Attributes of suitable groups for sugar cane crop	131
5.29 Attributes of suitable blocks for acacia crop	134
5.30 Attributes of good blocks for acacia crop	138
5.31 Attributes of best blocks for acacia crop	140
5.32 Attributes of suitable groups for acacia crop	144
6.1 Summary of cultivated crops	145

List of Figures

	Page
3.1 Hardware components.	23
3.2 Software modules	23
3.3 Data input	24
3.4 Data output	24
3.5 Desirable information	25
3.6 Transformation	26
3.7 Analytical operation	29
4.1 Soil investigation	31
4.2 canals map source	32
4.3 water resource	34
4.4 soil components	37
4.5 map unit	39
4.6 Blocks	45
4.7 Groups	48
4.8 Transportation	50
4.9 Towns	51
4.10 canals of the scheme	54

4.11 Areas	55
4.12 arc catalog	58
4.13 Arc map	59
5.2 Operations of suitable blocks	66
operations of good blocks	66
5.3 operations of best blocks	67
5.4 buffered blocks	67
5.5 Conceding of layers	68
5.6 Highlighting process	68
5.7 Statistical analyses	69
5.8 Suitable blocks of cotton crop	74
5.9 Good blocks of cotton crop	76
5.10 Best blocks of cotton crop	78
5.11 Suitable groups of cotton crop	79
5.12 Suitable blocks of Sorghum group	82
5.13 Good blocks of Sorghum group	84
5.14 Best blocks of Sorghum group	86
5.15 suitable groups of Sorghum group	88
5.16 Suitable blocks of Sorghum group	91
5.17 Good blocks of wheat group	93
5.18 Best blocks of wheat group	95
5.19 Suitable groups of wheat group	97
5.20 Suitable blocks of vegetables	100
5.21 Good blocks of vegetables	102
5.22 Good blocks of vegetables	105
5.23 suitable groups of vegetables	106
5.24 Suitable blocks of group maize	109
5.25 Good blocks of group maize	111
5.26 Best blocks of group maize	114
5.27 Suitable groups of groups maize	115
5.28 Suitable groups of millers crop	118
2.29 Good blocks of millets crop	120
2.30 Best blocks of millets crop	123
2.31 suitable groups of millets crop	124
5.32 Suitable blocks of sugar cane crop	127
5.33 Good blocks of sugar cane crop	129
5.34 Best blocks of sugar cane crop	132
5.35 Suitable groups of sugar cane crop	133
5.36 Good blocks of acacia crop	137
5.37 Good blocks of acacia crop	139
5.38 Good blocks of acacia crop	142
5.39 suitable groups of acacia crop	143