

**Sudan University of Science & Technology
College of Graduate Studies**

Design of a controller for DC-DC converters

**A thesis submitted as a partial fulfillment for
the master degree of Electronic control &
Microprocessor**

By: Abu bakkr Mohammed Hamza

**Supervisor:
ustaz. Abdullah Sallih**

November 2006

Acknowledgement

My thank firstly go to the almighty God without whose help none of this could have done. true thanks to AUSTAZ Abdullah Salih for this effective contribution in success of this research and preparation of the qualified of future engineers.

Also I would like to extend my thanks to SUST, Kordofan University, for granting me this scholarship and nevertheless the director general of national Electric corporation for proving me valuable data .

Last but not least gratitude's and thanks to all those who helped me in bringing this thesis to success; mainly the electrical department staff.

Abstract

A dc chopper can be used as a dc transformer to step up or step down a fixed dc voltage. The chopper can also be used for switching mode voltage regulators and for transferring energy between two dc sources. However, harmonics are generated in the input and load side of the chopper and these harmonics can be reduced by input and output filter. A chopper can operate on either constant frequency or variable frequency. A variable- frequency chopper generate harmonic of a variable frequencies and filter design becomes difficult. A fixed-frequency chopper is normally used to reduce the sizes of filter and to lower the load ripple current, the chopping frequency should be high. Thyristor choppers require extra circuitry to turn off the main thyristor, and as a result the chopping frequency and minimum on-time are limited.

This work covers the types of dc motor and the speed control method in a dc motor.

A pulse width modulation controller and control of buck converters are designed to control the speed of a d.c motor.

مستخلص

مقطع التيار المباشر يمكن استخدامه كمحول للتيار المباشر، لرفع وخفض الجهد الثابت للتيار المباشر. ويمكن استخدام المقطع أيضاً في منظمات الجهد لعملية الفتح والغلق، ويستخدم في تحويل الطاقة بين مصدرين للتيار المباشر. حيثما تتولد التوافقيات في الدخل والحمل الجانبي للمقطع. وهذه التوافقيات يمكن إزالتها بواسطة مرشح الدخل والخرج. والمقطع يمكن أن يعمل في التردد الثابت أو التردد المتغير.

المقطع ذو التردد المتغير يولد التردد المتغير التوافقي ويصعب فيه تصميم المرشح أما المقطع ذو التردد الثابت عادةً يستخدم لإزالة إحجام المرشح لتقليل تموج التيار وبالتالي التردد المتقطع سيكون عالياً.

مقطوعات التايرستور "Thyristor chopper" تحتاج إلى دائرة إضافية لفتح التايرستور الرئيسي، ونتيجة لذلك فإن التردد المتقطع واقل زمن للتشغيل يصبح محدوداً.

هذا العمل يعطى أنواع محركات التيار المباشر وطريقة التحكم في سرعة محرك التيار المباشر.

متحكم تعديل عرض النبضة والتحكم في مقطوعات بـ "Buck converters" وهي مصممة للتحكم في سرعة محرك التيار المباشر.

CHAPTER ONE
INTRODUCTION AND
RELATED WORKS

CHAPTER TWO

DC-DC CONVERTERS

CHAPTER THREE

DC MACHINE CONTROL

CHAPTER FOUR

MAIN CIRCUIT DESIGN

CHAPTER FIVE
CONCULUSIONS
AND
RECOMMENDATIONS

CONTENTS	Page. No
Acknowledgement	i
Abstract	ii
CHAPTER ONE	
Introduction	
1.1 Introduction	1
1.2 Related work	2
CHAPTER TWO	
DC-DC converter	
2.1 Introduction	3
2.2 Basic non-Isolated DC-Chopper	4
2.3 The types of non-isolated dc choppers	4
2.3.1 Buck converters	4
2.3.2 Boost converters	7
2.3.3 Buck-Boost converters	9
2.3.4 Cuk converters	13
2.4 Thyristor choppers	17
2.4.1 Impulse-Commutated choppers	17
2.4.2 Resonant choppers	20
2.5 Isolated DC-DC converters	25
2.5.1 Fly back converter	25
2.5.2 Forward converter	27
CHAPTER THREE	
DC Machine control	
3.1 Introduction	29
3.2 Torque-Speed characteristic	29
3.2.1 Armature voltage control	30
3.2.2 Field control	32
3.2.3 Armature Resistance control	35
3.3 Shunt Motor	37

3.4Series Motor	38
3.5 Universal Motor	41
3.6 Compound Motors	42
CHAPTER FOUR	
Main circuit design	
4.1 Design of Pulse Width Modulation controller	44
4.2 Design of Buck converter	47
4.3Calculations	47
4.4 DC power controller	50
5 Current and voltage waveforms	50
4.6 Transformation equations	52
4.7 Energy recovery operation	53
4.8 Results	55
CHAPTER FIVE	

Conclusion and Recommendations

5.1Conclusion	60
5.2Recommendations	60
References	61