

Sudan University of Science and
Technology
College of Graduate Studies

Study of Pressure drop in Heat
Exchangers

**A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in
Mechanical Engineering.**

Prepared by:

Eng. Amir AbuBakr Musa

Supervised by:

Prof. William Ibrahim Assad

Verse

قال تعالى:

وَ يَسْرِلَهُ مُرِيٌّ
فَقَهْهُ وَ قَوْلِيٌّ

رَبِّ اشْرَحْ لِي صَدْ[ۚ]
وَاحْلُلْ عَقْدَهُ[ۚ] لِسَانِي

صدق الله

العظيم

سورة طه

Dedication

This research is dedicated to

My parents with great love

My friends

And my colleagues

Eng. Amir AbuBakr

Abstract

Heat exchangers are frequently used in industry especially in steam and gas turbines power plants, as air pre-heaters or economizers and the like. These are mainly used to recover part of the thermal energy in exhaust and flue gases.

The measure of performance of these equipments is usually given as a heat ratio which is a measure of the heat recovered from the exhaust. Heat exchangers suffer from pressure losses due to the resistance to fluid flow through the passages on both sides of the exchanger. The pressure drop means in most cases, a loss in the useful work output.

In this research the investigation concentrates on the thermal ratio and the pressure drop in heat exchangers applied in existing power stations. Three of the largest power stations in Sudan are examined: namely:

- i. Khartoum Refinery Company (at Elgili).
- ii. Khartoum North Thermal Power Station.
- iii. Kenana Sugar Factory.

Temperatures and pressures were measured and calculations were carried out and the results were presented, and discussed.

Kern methods for calculating the pressure drop were examined using data obtained from unit (2) phase (I) in Khartoum North thermal power station.

The results obtained revealed that:

- a) The thermal ratio of heat exchangers, in addition to their dependence on the thermal properties of the material from which they are made,

was affected by the method of design and the inlet conditions. The results of the tests showed that for the shell and tube type of heat exchanger used in Kenana Sugar Factory, the thermal ratio was 0.52 while it was about 0.777 for the rotary heat exchanger used in Khartoum North thermal power station, phase (II) unit (4).

- b) The least pressure drop amounting to about (190 pa) i.e. about 1.6% of the inlet pressure, when using bar heaters as in Khartoum Refinery Company, and the highest pressure drop was (1830 pa) i.e. about 7.7% of the inlet pressure drop, when using Rotary heat exchangers, as in phase (II) unit (4) of Khartoum North thermal power station.

الخلاصة

المبادلات الحرارية تستخدم كثيراً في الصناعة خاصةً في محطات القدرة الغازية والبخارية، كما في سخانات الهواء قبل الاحتراق ووحدات الاقتصاد وما شابه، هذا بشكل رئيسي تستعمل لاستعادة جزء من الطاقة الحرارية في غازات المدخن والعادم.

قياس الأداء لهذه الأجهزة عادة يقدر بالنسبة الحرارية التي تحدد للمبادل الحراري كمية الحرارة المستعادة من العادم. لكن المبادلات الحرارية يصاحبها هبوط الضغط بسبب المقاومة التي تعوق تدفق الموائع خلال الممرات على جانبي المبادل. هبوط الضغط ،تقريباً في كثير من الحالات يقلل من ناتج الشغل المستفاد.

في هذا البحث، يرتكز التحقيق على النسبة الحرارية وهبوط الضغط في المبادلات الحرارية المستخدمة في ثلاثة من محطات القدرة في السودان وهي:

- i. شركة مصفاة الخرطوم (أجيلى).
- ii. محطة توليد الخرطوم بحري الحرارية.
- iii. مصنع سكر كنانة.

لقد تم قياس وحساب درجات الحرارة والضغط ، و عرضت النتائج. ثم استعملت طريقة (Kern) لحساب هبوط الضغط باستعمال القراءات التي تم الحصول عليها من الوحدة (2) المرحلة (II) في محطة الخرطوم بحري الحرارية.

جملة النتائج التي حصلت هي:

أ). النسبة الحرارية للمبادلات الحرارية، بالإضافة إلى اعتمادها على الخواص الحرارية للمواد التي صنعت منها، تتأثر بالشكل التصميمي وحالة الموائع عند المدخل. إن نتائج الاختبارات أعطت للمبادل الحراري ذو الأنبوب والغلاف من المبادلات الحرارية المستعملة في مصنع سكر كنانة، النسبة الحرارية حوالي 0.52 ، بينما حوالي 0.777 للمبادل الحراري

الدوار المستعمل في محطة توليد الخرطوم بحري الحرارية، المرحلة (II) الوحدة (4).

ب). حيث بلغ أقل هبوط للضغط حوالي (190 باسكال) أي بنسبة حوالي 1.6% من قيمة الضغط عند المدخل، وذلك عند استعمال مبادلات القصبان الحرارية كما في شركة مصفاة الخرطوم، بينما يبلغ أعلى هبوط للضغط حوالي (1830 باسكال) أي بنسبة حوالي 7.7% من قيمة هبوط ضغط عند المدخل، وذلك عند إستعمال المبادل الحراري الدوار، كما في المرحلة (II) وحدة (4) في محطة توليد الخرطوم بحري الحرارية.

Acknowledgments

I would like to express my gratitude to my supervisor, **Prof. William Ibrahim Assad**. For his unlimited help, encouragement, guidance and valuable advices during the work of this research.

I am also grateful to the staff of Khartoum Refinery Company, Khartoum North Power Station and Kenana Sugar Company for their valuable great assistances.

I wish to thank the Mechanical Engineering department, faculty of Engineering, Sudan University of Science and Technology for their help and cooperation.

Finally, my thanks are due to university of Elimam Elmahdi for help and encouragement, and to my colleagues and to whom their names are not mentioned.

List of Contents

Contents.....	Page
Verse.....	i
Dedication.....	ii
Abstract – English.....	iii
Abstract – Arabic.....	v
Acknowledgment.....	vi
List of contents.....	vii
List of Symbols.....	ix
List of Tables.....	xi
List of figures.....	xii
Chapter One.....	
1- Introduction.....	1
Chapter Two.....	
2-1 Introduction	3
2-2 Shell and tube heat exchangers.....	8
2-2-1 Fixed tube plate.....	11
2-2-2 U-tube type.....	11
2-2-3 Floating heat type.....	12

2-3 Plate heat exchanger type.....	13
2-4 Spiral heat exchangers.....	17
2-5 Rotary heat exchangers.....	22
2-6 Heat bar heat exchangers.....	25
2-7-1 Internal flow: friction factor and pressure drop.....	27
2-7-2 Cross-flow in plain arrays	30
2-7-3 In shell and tube heat exchangers.....	33
Chapter Three.....	
3-1 Introduction.....	43
3-2 Recuperative air pre-heaters.....	43
3-3 Regenerative air pre-heater.....	43
3-4 Khartoum North Power Station.....	45
3-5 Khartoum Refinery Company Power Station.....	52
3-6 Kenana Sugar Company.....	58
3-7 Sample Calculations.....	62
3-7-1 Pressure drop in cross-flow	62
3-7-2 Pressure drop in internal - flow.....	64
Chapter Four.....	
4-1 Introduction.....	66
4.2 Heat Ratio Analysis.....	66
4.3 Pressure drop Analysis.....	73
4.4 Calculation Method	78
Chapter Five.....	
5-1 Conclusion	81
5-2 Recommendation.....	83
Reference:.....	84

Nomenclature

Symbol	Quantity	Coherent SI Unit
ΔP	Total pressure drop	$N/m^2 = kg/(m.s^2)$
D	Tube inside diameter	m
U	The main velocity	m/s
u	Velocity, velocity component	m/s
P	Pressure	$N/m^2 = kg/(m.s^2)$
P	Tube pitch	m
A	Surface area	m^2
S	Cross-sectional area	m^2
r_o	Outer tube radius	m
f_o	Friction factor	--
D_h	Hydraulic diameter	m
η	Viscosity	$(N.s)/m^2 = kg/(m.s)$
λ	Thermal conductivity	$W/(m.K) = (kg.m)/s^3.K)$
t	Thickness	m
ρ	Density	kg/m^3
K_a	Inlet factor	--
V_{max}	Maxim. fluid velocity between tubes	m/s
α	Overall heat transfer coefficient	$W/(m^2.K)$
η_w	Water viscosity	$(N.s)/m^2 = kg/(m.s)$

ΔT_{LM}	Logarithmic mean temperature difference	K
ΔT	Temperature difference	K
δ	Boundary layer thickness	m
δ	Thickness, liquid film thickness	m
ΔP_s	Shell side pressure drop	$N/m^2 = kg/(m.s^2)$
C_p	Specific heat capacity at constant pressure	$J/(kg.K) = m^2/(s^2.K)$
m	Mass flux (mass velocity)	$kg/(m^2.s)$
M	Mass flow rate	kg/s
n_r	Number of tubes in rows	--
ΔP_c	Cross – flow pressure drop	$N/m^2 = kg/(m.s^2)$
n_t	Number of tubes in column	--
C'	Tube clearance	m
N	Number of baffle plate	--
N_T	Number of tubes	--
D_e	Equivalent diameter	m
D_s	Shell inside diameter	m
S_s	Factor	--
L_b	The baffle spacing	m
P_T	Tube pitch	m
L_B	The distance between baffles	m
ΔP_w	The windows zone pressure drop	$N/m^2 = kg/(m.s^2)$
S_m	Flow area near the center	m^2
D_{OTL}	The tube bundle diameter	m
L_c	The baffle cut distance	m
S_{sb}	Shell-to baffle leakage area	m^2
S_{st}	Tube-to baffle leakage area	m^2
δ_{st}	The radial clearance between tube and baffle	m
δ_{sb}	The radial clearance between shell and baffle	m
N_c	Number of cross rows	--
S_w	Window flow area	m^2

P_{TP}	Spacing between tube rows in flow direction	m
D_w	Equivalent diameter in windows zone	m
R_B	Correction factor for the influence of bypass	--
R_L	Correction factor for the influence of leakage	--
N_{cw}	Number of effective cross-flow rows in window zone	--

List of Table

Table.....	Page
Table (2.1): The values of constants according to the inside tubes positions.....	39
Table (3.1): Recording at inlet and outlet temperatures versus hours of the day, for (K.N.P.S) phase II, unit (4). The heat ratio is also given....	47
Table (3.2): Recording at inlet and outlet pressures versus hours of the day and pressure drop, for (K.N.P.S) phase II, unit (4).....	48
Table (3.3): Recording at inlet and outlet temperatures versus hours of the day, for (K.N.P.S) phase I, unit (2). The heat ratio is also given ...	50
Table (3.4): Recording at inlet and outlet pressures versus hours of the day and pressure drop, for (K.N.P.S) phase I, unit (2).....	51
Table (3.5): Recording at inlet and outlet temperatures versus hours of the day, for (K.R.C), (C.D.U) unit. The heat ratio is also given	53
Table (3.6): Recording at inlet and outlet pressures versus hours of the day and pressure drop, for (K.R.C), (C.D.U) unit	54
Table (3.7): Recording at inlet and outlet temperatures versus hours of the day, for K.R.C power station, unit 1 & 2. The heat ratio is also given	55
Table (3.8): Recording at inlet and outlet pressures versus hours of the day and pressure drop, for K.R.C power station, unit 1 & 2.....	56
Table (3.9): Recording at inlet and outlet temperatures versus hours of the day, for K.R.C power station, unit 3 and 4. The heat ratio is also given	57
Table (3.10): Recording at inlet and outlet pressures versus hours of the day, and pressure drop for K.R.C power station, unit (3) and(4).....	58

Table (3.11): Recording at inlet and outlet temperatures versus hours of the day, for K.S.C power station, unit (8). The heat ratio is also given.	59
Table (3.12): Recording at inlet and outlet pressures versus hours of the day and pressure drop, for K.S.C power station, unit 8.....	60
Table (3.13): Calculated pressure drop across the shell for (K.N.P.S) phase (I) unit (2).....	63
Table (3.13): Calculated pressure drop through the pipe according to the operation conditions for (K.N.P.S) phase I unit (2).....	65

List of figures

Contents.....	No.
Fig.(2-1): Transfer Process Classifications.....	4
Fig.(2-2): Construction Classifications.	5
Fig.(2-3): Flow arrangement Classifications.	6
Fig. (2-4): Mechanism of heat exchange.	7
Fig. (2.5a) Disassembly of shell and tube heat Exchanger.	9
Fig. (2.5b): Nomenclature for shell and tube heat exchangers.....	10
Fig.(2.5c): Assembly of shell and Tube Heat Exchanger.	10
Fig. (2.6): Fixed tube heat exchanger.	11
Fig. (2.7): U tube heat exchanger.	12
Fig. (2.8): Floating head heat exchanger.	12
Fig. (2.9) - Exploded View of Plate and Frame Heat Exchanger.....	14
Fig. (2.10) : A Two-Pass Plate and Frame Flow Arrangement.....	15
Fig. (2.11): Process Application of a Plate and Frame Heat exchanger.....	17
Fig. (2.12) – Spiral Heat Exchanger Manufacture.....	18
Fig. (2.13) – Type 1 Spiral Flow Heat Exchanger.....	19
Fig. (2.14): Type 2 - Spiral Flow Heat Exchanger.....	20
Fig. (2.15): Type 3 - Spiral Flow.	21

Fig.(2.16)The radial walls, Vane blade & Rotor hub.	23
Fig. (2.17): The heating elements profile (storing matrix shape).....	24
Fig. (2.18): The rotary air heater cold & hot ends, and cleaning device.....	25
Fig. (2.19): Heat-pipe heat exchanger.	26
Fig. (2.20): Friction factor for pipe.	29
Fig. (2.21): Geometry of cross-flow tube arrays.....	31
Fig. (2.22): Pressure drop in-line banks as referred to the relative longitudinal pitch P_2	32
Fig. (2.23): Pressure drop of staggered banks as referred to the relative transverse pitch P_1	33
Fig. (2.24): The flow area for the Kern method: square & triangular pitch....	36
Fig. (2.25): Plot of f as a function of shell-side Reynolds number.....	37
Fig. (2.26): Correction factor for the influence of the tube-to-baffle and shell-to-baffle on pressure drop.....	41
Fig. (2.27):Correction factor for the influence of bypass on pressure drop....	42
Fig. (3.1): Fresh air and flue gases pass, on rotary air pre heater.....	46
Fig. (4-1): The Heat ratio of unit (2) versus hour of the day.....	66
Fig. (4-2): The Heat ratio of unit (4) versus hour of the day.	66
Fig. (4-3) The Heat ratio of C.D.U versus hour of the day.....	67
Fig. (4-4): The Heat ratio of nit (1)and(2) versus hour of the day.....	67
Fig. (4-5): The Heat ratio of unit (3)and(4) versus hour of the day.....	68
Fig.(4-6): The Heat ratio of nit(8) versus hour of the day.....	68
Fig.(4-7): The pressure drop of nit(2) versus hour of the day (flue gas side)..	69
Fig.(4-8) The pressure drop of unit (2) versus hour of the day (air side).....	69
Fig.(4-9): The pressure drop of nit(2) versus hour of the day (both air and flue gas sides)	70
Fig.(4-10): The pressure drop of nit(4) versus hour of the day (air side).....	70
Fig.(4-11): The pressure drop of nit(4) versus hour of the day (flue gas side)	71
Fig.(4-12): The pressure drop of nit(4) versus hour of the day (both air and flue gas sides)	71

Fig.(4-13): The pressure drop of C.D.U unit versus hour of the day (air side)	72
Fig.(4-14): The pressure drop of C.D.U unit versus hour of the day (flue gases side)	72
Fig.(4-15): The pressure of C.D.U unit versus hour of the day (both air and flue gas sides)	73
Fig.(4-17): The pressure drop of nit(1)and(2) versus hour of the day (air side)	73
Fig.(4-16): The pressure drop of unit (1)and(2) versus hour of the day (flue gases side)	74
Fig.(4-18):The pressure drop of nit(1)and(2) versus hour of the day (both air and flue gas sides)	74
Fig.(4-19): The pressure drop of nit(3)and(4) versus hour of the day (air side)	75
Fig.(4-20): The pressure drop of nit(3)and(4) versus hour of the day (flue gas side).....	75
Fig.(4-21): The pressure drop of unit(3) and (4) versus hour of the day (both air and flue gas)	76
Fig.(4-22): The pressure drop of nit(8) versus hour of the day (air side)	76
Fig.(4-23): The pressure drop of nit(8) versus hour of the day (flue gas side)	77
Fig.(4-24): The pressure drop of nit(8) versus hour of the day (both air and flue gas sides)	77
Fig.(4.25) The calculated pressure drop of unit (2)versus hour of the day flue gas side.....	78
Fig.(4.26) The calculated pressure drop of unit (2)versus time air side.....	79
Fig.(4.27) The comparison of average pressure drop values of unit (2)versus hour of the day, using Kern method (air side).....	79
Fig.(4.28) The comparison of average pressure drop values of unit (2)versus hour of the day flue (gases side).....	80