

DEDICATION

...TO MY PARENTS

.AND TO, MY BROTHERS

ACKNOWLEDGMENT

I would like to extend my deep appreciation with recognition to Professor **Osman Mohammed Ali Sharfi** for his invaluable advice and supervision during this study. In addition, I am grateful to Professor **El Tayyib Idries Eisa**, the Co – supervisor, who provided basic guidance in conducting this work, and for his keen guidance and help

Thanks are also extended to Engineer **Alfadil Beraima Hamed** (M.Sc.Mech.Engineering) the Head of the Wind and Minihydro department at the Energy Research Institute for his efforts and help

.Thanks are offered to the workshop staff for their great help
Finally grateful thanks are due to Engineer **Abdelazziz Ahmed Osman** who assisted me in conducting the experimental work, and to all those who made it possible to realize this work

ABSTRACTS

The model of a horizontal – axis wind turbine was designed to generate 164 watts. Execution of design include the design of the rotor (3 m diameter) which is made of three wooden blades of a cambered airfoil section (NACA 4412 section), the blades were manufactured locally. The rotor is coupled to a small D.C. generator via a belt transmission system. The designs of the transmission subsystems (belts, shafts, and bearings) were achieved. The wind generator model is installed on a tower 3 meters above ground. A field test was carried out on a wind generator model at the Soba field owned by the Energy Research Institute. The output voltage and current were measured to determine the amount of electricity generated by the model.

After the test, it was found that the efficiency of the model is low. This was mainly due to the decrease of the wind speed at the 3 meters above ground (the height of the tower). In addition to that, the locally available technologies restrict the possibilities of manufacturing blades with the airfoil shapes that can extracts power with high efficiency.

CONTENTS

Dedication	
Abstract	
Acknowledgement	
List of symbols	
	Page
CHAPTER 1: INTRODUCTION	1
Wind potential in the Sudan	3 1-1
CHAPTER 2: HISTORICAL BACKGROUND	5
2-1Wind Machines	5
Horizontal – axis Wind Turbines	16 2-1.1
Vertical – axis Wind Turbines	16 2-1.2
Theoretical Background	19 2-2
Available Wind Power	19 2-2.1
Axial Momentum Theory	21 2-2.2
Blade Element Theory	28 2-2.3
Combination of Momentum Theory and Blade Element Theory	29
Sudan previous experience	33 2-3
CHAPTER 3: WIND MACHINES FOR POWER GENERATION ..	35
Types of Wind Machines	36 3-1
Horizontal – axis Machines	36 3-1.1
Vertical – axis Machines	47 3-1.2
Matching Wind Machines to Loads	54 3-2
Prediction of Design Loads	57 3-3
Comparison between the HAWT and VAWT	58 3-4

CHAPTER 4: SITE SELECTION.....	60
Wind Shear	60 4-1
Turbulence	61 4-2
Acceleration on Ridges	61 4-3
Wind Potential in Khartoum Area	62 4-4
CHAPTER 5: ROTOR DESIGN.....	65
Determination of the Rotor Parameters.....	65 5-1
Density of the Air	65 5-1.1
Derivation of the Rotor Diameter and Design 5-1.2	
Power Relation.....	65
Number of Blades	66 5-1.3
Tip Speed Ratio	66 5-1.4
Airfoil Data Selection	67 5-1.5
Calculation of the Chord.....	69 5-1.6
Design Procedure	69 5-1.7
Method of the Airfoil Section Design.....	71 5-2
CHAPTER 6: DESIGN OF THE TOWER	75
Loadings acting on the Tower.....	75 6-1
Forces and Moments under Normal and Storm Conditions	75 6-2
Normal Condition.....	75 6-2.1
Storm Condition	80 6-2.2
Design Criteria.....	81 6-3
Normal Condition.....	81 6-3.1
Storm Condition.....	81 6-3.2
Summary of the Formulas	81 6-4
Normal Conditions	81 6-4.1
Storm Condition	82 6-4.2
Calculation of Forces and Moments	82 6-5
Normal Condition	82 6-5.1

Storm Condition.....	83	6-5.2
Summary of the Loads	84	6-6
Types of the Towers	85	6-7
Calculation of the Loads acting on the Tower	86	6-8
CHAPTER 7: DESIGN OF THE MODEL	90	
Rotor Design	90	7-1
Rotor Parameters	90	7-1.1
Blades Installation	90	7-1.2
Power Transmission	90	7-2
Selection of the Pulleys	92	7-2.1
Design of the Belts	93	7-2.2
Design of the V-belts using Manufacturing Data	93	7-2.3
The Transmission System Installation	96	7-2.4
Design of the transmission system.....	96	7-2.5
Shafts and bearings design.....	97	7-2.6
The Electric Generator selection.....	105	7-3
Tower selection.....	105	7-4
The Tail Vane	105	7-5
Field Test	105	7-6
Analysis of the Test Results	106	7-7
CHAPTER 8: CONCLUSION & RECOMMENDATIONS	110	
References	111	
Appendix- A	113	
Abstract (in Arabic)	118	

LIST OF SYMBOLS

a	axial induction (interference) factor	dimensionless
\bar{a}	tangential induction (interference) factor	dimensionless
A	area	m^2
$A_{R \text{ proj.}}$	the projected area of the rotor blades	m^2
$A_{T \text{ proj.}}$	the projected area of the tower	m^2
B	number of blades	dimensionless
B_x	bending factor with respect to x – axis	cm^{-1}
B_y	bending factor with respect to y – axis	cm^{-1}
c_t	coefficient of wind pressure	dimensionless
C	chord of blade	m
C_c	the critical slenderness ratio	dimensionless
C_{column}	slenderness ratio of column	"
C_d	sectional drag coefficient	"
C_D	blade drag coefficient	"
C_l	sectional lift coefficient	"
C_{ld}	design lift coefficient	"
C_L	blade lift coefficient	"
C_p	power coefficient	"
C_Q	torque coefficient	"
C_T	thrust coefficient	"
D	diameter	m
D	drag force	N
e	distance rotor plane – vertical axis	m
e_r	eccentricity of the rotor	m
E	modulus of elasticity	N/mm^2
f	frequency	1/s

f_a	actual column stress	N/mm^2
f_y	yield stress	N/mm^2
f.s.	factor of safety	dimensionless
f_{bx}	actual bending stress about x – axis	N/mm^2
f_{by}	actual bending stress about y – axis	N/mm^2
F	force	N
F_a	allowable column stress	N/mm^2
F_{bx}	allowable bending stress about x – axis	N/mm^2
F_{by}	allowable bending stress about y – axis	N/mm^2
F_w	wind pressure	N/m^2
g	acceleration of gravity	m/s^2
h	altitude	m
H	height of the tower	m
K	effective length factor	dimensionless
k_x	drag force	N
\tilde{k}_x	fluctuating force	N
k_y	yaw force	N
k_z	vertical force	N
l	length	m
L	length of column	m
L	lift force	N
m	mass of the rotor	kg
m'	mass flow rate	kg
M	moment	Nm
M_x	moment about x – axis	Nm
M_y	moment about y – axis	Nm
M_z	moment about z – axis	Nm
P	pressure	N/m^2
P^+	static pressure before the rotor	N/m^2

\bar{P}	static pressure behind the rotor	N/m^2
P	power	W
$P_{\text{equi.}}$	Equivalent axial compression load	N
Q	torque	Nm
r	local radius	m
R	radius	m
S	section modulus	cm^3
S_x	section modulus with respect to x – axis	cm^3
S_y	section modulus with respect to y – axis	cm^3
T	thrust force	N
V	wind velocity	m/s
V_{ax}	axial velocity through rotor	m/s
V_1, V^∞	undisturbed wind velocity	m/s
\bar{V}	average wind velocity	m/s
V_2	wind velocity behind the rotor	m/s
V_{storm}	peak velocity in storm	m/s
W	relative wind velocity	m/s
W_t	weight	kg/m
z	coordinate height	m
z_0	roughness height	m
z_r	reference height	m

α	angle of attack	dimensionless
α_d	design angle of attack	"
β	blade setting angle	"
δ	angle between the wind velocity and rotor axis	"
η	efficiency	"
λ	tip speed ratio	"
λ_d	design tip speed ratio	"
λ_r	local tip speed ratio	"
π	3.14159265359	"
ρ	density	kg/m ²
σ	solidity ratio of the rotor	dimensionless
Φ	angle between relative wind direction and rotor plane	"
ω	induced tangential angular wind velocity	1/s
Ω	angular velocity of the rotor	1/s
φ_1	a factor of the dynamic influence of the wind	dimensionless

**STUDY AND DESIGN OF A HORIZONTAL AXIS – WIND
TURBINE FOR ELECTRICITY GENERATION**

Thesis Submitted To The College Of Engineering Sudan University Of
Science & Technology In Fulfillment Of The Requirements For
Awarded Degree Of M.Sc. in Mechanical Engineering.

BY
MURTADA HASSAN ABDULRAHMAN
B.Tech. Mechanical Engineer

May, 2005