

بسم الله الرحمن الرحيم

إِنَّ الَّذِينَ ءَامَنُوا وَ
عَمِلُوا الصَّالِحَاتِ إِنَّا لَا
نَضِيعُ أَجْرَ مَنْ أَحْسَنَ
عَمَلًا

صدق الله العظيم

سورة الكهف آية 30

DEDICATION

Once Again, To Wonderful Parents, Teachers & All,
With Love.

ACKNOWLEDGMENTS

I want to express my appreciation to Dr.Bala Aljak, who guide me, reviewed the manuscript & provided many valuable suggestions. A special note of appreciation goes to prof. Babu P.G. who offered constructive suggestions.

تجريـد

يعتبر هذا البحث مدخل لتقنية معالجة الإشارات الحيوية المرسلة من مسافة بعيدة عن طريق إشارة الراديو. حيث تربط هذه التقنية الكائن الحي (المريض - الحيوان-.....)

و وحدة معالجة الإشارة بوصلة لاسلكية. باستخدام جهاز إرسال راديو يكون قرب المريض حيث تنتشر الإشارة الحيوية ضمن مدى محدد, يستطيع بذلك الباحث أو الدكتور استقبالها ومتابعة مريضه أو إجراء بحوثه عن الحيوان و هو في وضعه الحركي الطبيعي. و تمنح هذه التقنية كذلك أفضل طريقة لعزل المريض عن الأجهزة الطبية و خطوط القدرة.

العديد من الأجهزة الحيوية الطبية تعمل بهذه التقنية. في هذا المشروع استخدم جهاز تخطيط القلب.

ABSTRACT

This project introduces a technique that is processed by radiotelemetry using biopotential and other signals. A technique which provides a wireless link between the biological subjects (patient-animals.... etc.) and the majority of the signal-processing components. A miniature

radio transmitter attached to the patient is used broadcast the information over a limited range. Clinicians or doctors can monitor a patient or conduct a research on animal while they have full mobility. This technique also provides the best method of isolating the patient from the recording equipment and power lines.

Many types of radiotelemetry systems are used in biomedical instrumentation. In this project we use the Electrocardiograph (ECG).

CONTENTS

DEDICATION	I
ACKNOWLEDGMENTS	II
تجزید	III
ABSTRACT	IV

CHAPTER ONE INTRODUCTION

I.1 BIOTELEMETRY	1
I.2 SCOPE OF THE PROJECT	3
I.3 FEATURES OF REMOT ECG DEVICE	5

CHAPTER TWO REVIEW OF LITERATURE

2.1 The Heart	6
2.2 The Cardiac Cycle	7

2.3 SIGNIFICANCE OF ECG	8
2.4 RELATION BETWEEN ELECTRICAL ACTIVITY OF THE HEART AND ECG PATTERN	9
2.5 ELECTRODE PLACEMENT AND IT'S IMPORTANCE	14

CHAPTER THREE

THEORY

3.1 BIOPOTENTIAL ELECTRODES	16
3.2 AMPLIFIER	17
3.2.1 The Inverting Operational Amplifier	19
3.2.2 The Summing Amplifier	20
3.2.3 The Non-Inverting Amplifier	21
3.2.4 Differential Amplifiers	22
3.3 ANGLE MODULATION	24
3.3.1 Spectra and Bandwidth of FM Signals	25
3.3.2 FM Modulation Methods	26
Direct Method	26
Indirect Method	27
3.3.3 FM Detection Techniques	28
Slope Detector	29
Zero - Crossing Detector	30
PLL for FM Detection	30
Quadrature Detection	32
3.3.4 A Tradeoff Between SNR Bandwidth in FM Signal	34
3.4 ANALOG TO DIGITAL CONVERTER	35
3.4.1 Parallel Comparator A/D Converter	35
3.4.2 Dual-Slope A/D Converters	36
3.4.3 Successive-Approximation A/D Converters	38
3.5 INTERFACING	40
3.5.1 Parallel Port Interface Card	40

CHAPTER FOUR

HARDWARE DESIGN

4.1 AMPLIFIER AND SIGNAL CONDITIONING UNIT	41
Fm Transmitter	42
Fm Receiver	44
4.4 ADC	44
4.5 PARALLEL PORT INTERFACE CARD (LPT1 INTERFACE WITH 8255 PPI)	46
4.5.1 Specifications Of Interface Card	47
4.5.2 Parallel Port Basics	49
4.5.3 Working Of Interface Card	52

CHAPTER FIVE

SOFTWARE DESIGN

5-1 FLOWCHART	56
5.2 DEVICE DRIVER	61
5.3 PROGRAM FOR DISPLAY OF ECG	63
RESULTS & CONCLUSION	65
RECOMMENDATION	66

APPENDIXES

DATA SHEETS

REFERENCES

67

LIST OF FIGURES

NO. OF FIGURE	TITLE OF FIGURE	PAGE
2.1	The Heart	6
2.2	Einthoven's triangle and placement of leads	15
3.1	The Basic Operational Amplifier	17
3.2	Op Amp Equivalent Circuit	18
3.3	Inverting Operational Amplifier	19
3.4	Summing Amplifier	20
3.5	Non- Inverting Amplifier	21
3.6	Direct Method	27
3.7	Indirect Method	28
3.8	Slope Detector	29
3.9	Zero - Crossing Detector	30
3.10	PLL Circuit	31
3.11	Quadrature Detection	33
3.12	Parallel Comparator A/D Converter	36
3.13	Dual-Slope A/D Converters	37
3.14	Successive-Approximation A/D Convert	39
4.1	Pin-out Diagram of TBA810	41
4.2	Application Circuit of TBA810 Amplifier	42
4.3	FM Transmitter	43
4.4	The ADC	45
4.5	Parallel Port Interface Card	46

4.6	Parallel Port Interface Card with PC	47
4.7	Pin Assignments	50
4.8	Port Assignments	50
4.9	The schematic diagram of interface card	55
5.1	Device Driver Flowchart	56
5.2	Program For Display Of ECG Flowchart	59

LIST OF TABLES

<i>NO. OF TABLE</i>	<i>TITLE OF TABLE</i>	<i>PAGE</i>
2.1	Wave Of Normal ECG	13

LIST OF ABRIAVIATION

(A_v)	Gain
(A_{com})	Common -Mode Gain
(ADC)	Analog To Digital Converter
(AV)	Atrio-Ventricular Node
(Ca⁺⁺)	Calcium
(CRO)	Cathode Ray Oscilloscope
(CMRR)	Common - Mode Rejection Ratio
(DAQ)	Data Acquisition
(ECG)	Electrocardiograph.
(EOC)	End Of Conversion
(FM)	Frequency Modulation
(FRC)	Flexible Ribbon Cable
(IF)	Intermediate Frequency
(K⁺)	Potassium
(LED)	Light Emitted Diode
(Na⁺)	Sodium
(Op Amp)	Operational Amplifier
(PLL)	Phase Locked Loop
(PM)	Phase Modulation
(PPI)	Parallel Port Interface
(RF)	Radiofrequency
(SA)	Sino-Atrial Node
(SC)	Start-Conversion
(VCO)	Voltage- Controlled Oscillators