

ABSTRACT

Binary information "bits" are at the heart of modern communications. All information can be represented as blocks of stream of bits. Modern communication networks are designed to carry bits and therefore they can handle any type of information

CRC is the most powerful error detection more than parity bit and check sum method, cause it can be used to detect single bit error, two bits error and burst error.

CRC calculation require a divisor which called sometimes "Generator polynomial" or "poly".

The width of poly is very important as dominate the whole calculation, typically width of 8 or 16 or 32 are chosen so as to simplify implementation on modern computers.

The width of the poly is actual one bit more on most significant bit.

Any transmitted message T is attached with remainder after dividing the original message this remainder called CRC.

The receiver divide the received message into some poly that used at the transmitter the remainder must be zero, which means that there is no error at received message.

تجريـد

المعلومات الثنائية تعتبر القلب النابض للاتصالات الحديثة ، بحيث يتم تمثيل جميع المعلومات عن طريق حزم أو خانات ثنائية متسلسلة .
صممت شبكات الاتصال الحديثة لحمل الثنائيات ، ومن المعلوم سلفاً أنها تحمل أي نوع من المعلومات .

تعتبر الدالة الدورية لاكتشاف الأخطاء هي الطريقة المثلث لاكتشاف الأخطاء مقارنة باختبار التكافؤ واختبار المجموع ويعزى ذلك لإمكانيتها لاكتشاف الأخطاء المفردة والأخطاء الزوجية والأخطاء المتعددة .
ولحساب أداء الدالة الدورية لاكتشاف الأخطاء تقوم باختيار " قاسم " أو ما يسمى أحياناً بالدوال متعددة الحدود

عرض الدوال متعددة الحدود هام جداً كمتحكم في الحساب الكلى مثلاً عرض 8 أو 16 أو 32 خانة ثنائية والتي تم اختيارها لتبسيط تمثيلها على أجهزة الكمبيوتر الحديثة .

عرض الدالة متعددة الحدود يزيد بخانة واحدة بالخانة المعنوية العليا يجب أن نعلم الآن أن أي رسالة مرسلة T يتم إلهاق المتبقي بها بعد إجراء القسمة على الرسالة الأصلية وهذا المتبقي يعرف بالدالة الدورية لاكتشاف الأخطاء

يقوم المستقبل بقسمة الرسالة على الدالة متعددة الحدود التي تم استخدامها بالمرسل ، يجب أن يكون المتبقي صفرًا وإذا لم يكن كذلك فان ذلك يعني وجود خطأ بالرسالة المستقبلة

DEDICATION

To my Father and Mother

To my Brother and Sisters

And to all lovely people who met me during my life...

And familiar to me ...

Who have shown me the right path of future...

To NILE VALLEY UNIVERSITY family

ACKNOWLEDGEMENT

It is great pleasure to acknowledge the assistance and contribution of individual who have contributed to this effort.

Firstly, special appreciation to

Dr. ABDEL RASOUL JABAR ALZUBAIDI,

the supervisor for all of his guidelines for the project to see light,

Muntasir Abdullah, Jamal Mohammed, Zeiadah Alfadil whom assists in giving motivations;

I would like also to express gratitude the golden fingers of KAMAL FAISAL who helping in type the research and HAMAD ALNEEL who assists in getting photos of circuit.

Eventually, all thanks and appreciation to college of ENGINEERING – SECTION of ELECTRONIC, SUDAN UNIVERSITY.

Table of Contents

Abstract	i
تجريـد	ii
Dedication	iii
Acknowledgement	iv

Table of Contents	v
List of Tables	vii
List of Figures	viii
List of Abbreviations	ix

Chapter one

Literature Review

1.1 Introduction	1
1.2 Parity Bits	2
1.2.1 Error Detection Capability	3
1.2.2 Typical Error Modes	4
1.2.3 Practical use in (RS232)	4
1.3 Check Sum	5
1.3.1 Error Detection Capability	6
1.3.2 Intermission :Classes of Errors	7
1.4 Cyclic Redundancy Check	7
1.5 Objectives	8
1.6 Methodology	8

Chapter Two

Cyclic Codes and CRC Calculations

2.1 Cyclic Codes	9
2.1.1 Definition	9
2.1.2 Cyclic Redundancy Check Codes	9
2.1.3 Polynomial Representation of Binary Words	10
2.2 Encoding as Computation of Remainder in polynomial Division	11
2.3 Decoding as Polynomial Division	12
2.4 Error detection	13
2.4.1 Effective Ness of Error Detection	13
2.4.2 Error Detection Implementation in Real System	15
2.5 Typical Calculation	16
2.5.1 Typical CRC Calculation at The Transmitter	17
2.5.2 CRC Calculatio20n at Receiver	18

Chapter Three

Circuit Design

3.1 Digital Logic	19
3.1.1 Parallel in Serial Out Shift Register	19
3.1.2 CRC Circuit Design	26
3.2 CRC Long Division Implementation	28
3.3 Circuit Interface	31
3.3.1 Using The Power Source	31
3.3.2 Parallel Port	32
3.3.2.1 Addressing Port	33

Chapter Four

Software

4.1 C++ program Literature	37
4.2 Control Function in Program	37

4.2.1 Clock	37
4.2.2 Reset	38
4.2.3 Load	38
4.2.4 Shift	38
4.3 C++ Program	43

Chapter Five

Conclusion and Results

5.1 Conclusion	50
5.2 Results	51
5.2.1 First	51
5.2.2 Second	56
5.2.3 Error Control Depend on Results	57
5.3 Obtained Results	58

Appendix

SN74LS04-(Hex Inverters)	59
SN74LS08-(Quadruple 2-Input Positive-AND Gates)	64
SN74LS32-(Quadruple 2-Input Positive-Or Gates)	69
SN74LS86-(Quadruple 2-Input exclusive-Or Gates)	74
SN74LS174-(Hex D Flip-Flops With Clear)	79
Standardized Polynomial Codes	87
References	89

List of Tables

Table	page
(3.1) : Not gate truth table	20
(3.2) : And gate truth table	21
(3.3) : Or gate truth table	21
(3.4) : D flip flop truth table	22
(3.5) : Real division implementation in CRC circuit	30

(3.6) : Power supply voltage depend on wire color	32
(3.7) : Data register bits connected to LPT pins	34
(3.8) : Status register bits connected to LPT pins	35
(3.9) : control register bits connected to LPT pins	36
(3.10) : Address of LPT	36

List of Figures

Figure	page
(1.1) : XOR of data bits leads to even parity	2
(1.2) : Serial line signal :empty line , start bit ,7 data bits 'parity , stop bit (empty line)	5
(2.1) : Encoding and decoding information block diagram	16
(3.1) : Not gate block diagram	20
(3.2) : 74LS04 : 6 inverter chip	20
(3.3) : And gate block diagram	20
(3.4) : 74LS08 : (4-2 in and gate) chip	20
(3.5) : Or gate block diagram	21
(3.6) : 74LS42 : (4-2 in or gate) chip	21
(3.7) : D flip flop block diagram	22
(3.8) : 74LS174 (6 D type flip flop) chip	22
(3.9) : Parallel in serial out shift register design using practical chips	24
(3.11): Parallel in serial out shift register design from typical circuit	25
(3.12): CRC Circuit design	26
(3.13): CRC Circuit design using practical chips	27
(3.14): CRC Circuit from typical design	27
(3.15): CRC Block diagram implementation	28
(3.16): power supply connector used to feed circuit with Vcc	32
(3.17): Lab link cable used for LPT interface	33
(4.1) : Flow chart for C++ program	39
(5.1) : program interface	51
(5.2) : main menu screen	52
(5.3) : sending data to encrypt	53
(5.4) : typical circuit result to encrypt data	54
(5.6) : sending data to check	55
(5.7) : typical circuit results to decrypt data	56

List of Abbreviation

ARQ	Automatic retransmission request
ASYNC	a synchronization
BER	bit error rate
CRC	Cyclic redundancy check
FCS	Frame check sequence
FEC	Forward error correction
IP	Internet protocol
LED	Light emitting diode
LPT	Line printer terminal
LSB	Least significant bit
MSB	Most significant bit
TCP	Transmission control protocol
UDP	User data gram protocol
XOR	Exclusive or