

Acknowledgement

I would like to express my deep gratitude to all those who contributed to wards the completion of this work especially: **Ustaz \ ABDALLAH SALIH ALI**

Supervisor of this project for his support and advice, I thank all staff of Electrical department – Sudan University, staff of C&I (control and instrumentation) – The Khartoum North Power Station, all my colleagues in field, my family and every one who supported me through out this project.

Contents

		Page
Acknowledgement		i
List of contents		ii
List of tables		v
List of figures		vi
Abstract		vii
目次		viii
Chapter One Interdiction		
1.1	Introduction	1
Chapter Two Digital controls		
2.1	In Introduction to control	3
2.2	Classical controllers	3
2.3	Digital controllers	3
2.3.1	Microcomputer	4
2.3.2	Digital signal processor	4
2.3.3	Microcontroller	5
2.4	Microcontroller diagrams	5
Chapter Three Sensors		
3.1	Sensor selections for temperature control	11
3.2	Choosing sensors	11
3.2.1	Thermocouple	12
3.2.1.1	Thermocouple construction	14
3.2.1.2	Thermocouple selection	15
3.2.2	Resistance Temperature Sensing	17
3.2.3	Thermistor	18
3.2.4	Integrate Circuit Temperature Transducers	18
Chapter Four Temperature control		
4.1	Introduction to Temperature control	21
4.2	Time varying in temperature control	21
4.3	Nonlinear in temperature control	21
4.4	Large load changes	21
4.5	Fuel change	22
4.6	Fluidized bed boiler	22
Chapter Five Control circuit		
5.1	Introduction to control circuit	26
5.1.1	Proportional control model	26

5.1.2	Integral control model	27
5.1.3	Derivative control model	27
5.1.4	Proportional plus integral control model	27
5.1.5	Proportional plus derivative control model	28
5.1.6	Proportional plus integral plus derivative control model	28
5.2	Digital PID	29
5.2.1	Propretional	29
5.2.2	Integration PID	29
5.2.3	Differentiation	30
5.3	The hardware	31
5.3.1	The Control circuit	31
5.3.2	The Keyboard	35
5.3.3	The Display	35
5.4	The software	35
5.4.1	Temperature microcontroller program	39
Chapter Six Simulation and Results		
6.1	Program correction and simulation	66
6.2	Program assembly	68
6.2.1	Hexadecimal file program	68
6.3	The circuit components and coast	73
6.4	Recommendations	75
References		76

Appendices

A	Atmel AT89C51 Pin out and Description	77
B	ADC0804 Datasheet	79
C	DAC0808 Datasheet	81
D	3-Terminal Positive Regulators LM7805	82
E	Operational Amplifier LM741 Datasheet	83
F	BCD to 7-Segment Decoder DM74LS47	84
G	Decoders DM54LS154 4-line to 16-line	88
H	2-Digits 0.5Inch	91

List of tables

Table No.	Title	Page
3-1	Type of thermocouples	16
3-2	Range of LM sensor	20
6-1	Program simulation result	68

List of figures

Fig. No.	Title	Page
2-1	AT89C51 pin configuration	6
2-2	AT89C51 block diagram	8
3-1	Thermocouple	13
3-2	Extension wires	14
3-3	Off setting errors in RTDs	17
3-4	LM34 Block diagram	20
3-5	LM 34 connection A/D	20
4-1	Typical installation of one stage of attemperator	24
5-1	Control system block diagram	26
5-2	Integration PID	29
5-3	Differentiation PID	30
5-4	ADC connection	33
5-5	Control circuit	34
5-6	Keyboard	36
5-7	Main flow chart of program	37
5-8	PID subroutine flow chart	38
6-1	.Program correction	66
6-2	Program debug	67

Abstract

This research is to implement microcontrollers to control the superheated steam (main steam) temperature in power plants.

There are many types of main steam temperature control, one of them is steam desuperheating by spray water injection. This approach is chosen

because it is easy to implement, economic and gives an optimal control of steam temperature.

Atmel microcontroller AT89C51 was chosen to build the circuit that controls the spray water. The control circuit actuates the valve opening to control the quantity of the injected water.

A circuit with two inputs, one output and a display was built, one input is to read the actual temperature, the other for the reference temperature and the output one to control the valve of spray water, after processing both inputs.

The software was written using assembly language and simulated by Keil μ Vison2. Also this program is used to assemble from the assembly language to the Hexadecimal file loaded into the microcontroller AT89C51 by Atmel programmer.

The test was made and found time surveys need to verify the program.

The circuit can also be programmed to control temperature, level and pressure after modifying the control program.

٠٠٠٠٠

تهدف هذه الدراسة الى تطبيق المتحكمات الدقيقة للتحكم في حرارة البخار المحمص لمحطات القدرة.

هناك طرق عدة للتحكم فى حرارة البخار المحمص اختيارت منها طريقة حقن الماء على البخار واعادة تحميصه لأجراء هذه الدراسة وذلك لسهولة تطبيقها عمليا واقتصاديا وانها تعطى تحكم أمثل فى حرارة البخار. تم اختيار المحكمة الدقيقة أتميل لبناء دارة التحكم فى البخار المحمص. تكون الفكرة الأساسية للدراسة بأختيار احدى المحكمات الدقيقة المتاحة (محكمات أتميل) لبناء دارة تحكم تعمل على ايعاز البلف الذى عن طريقه يتم التحكم فى كمية الماء المحمص الى البخار.

تم بناء دارة تتكون من مدخلين وخرج وشاشة اظهار، احد المدخلين لقراءة درجة الحرارة بعد حقن الماء والأخر لدرجة حرارة الأسنان المطلوبة حيث تتم معالجتها برمجيا وایعاز البلف المحكم فى كمية الماء المحمص عن طريق المخرج.

كتب برنامج بلغة التجميع لتشغيل الدارة أجرية عليه عملية محاكاه ببرنامج محاكي Keil Vison2 لمحاكات التنفيذ خطوة بخطوة ثم حول الى لغة الآلة وحمل عليها بواسطة مبرمجة لمحكمات أتميل.

بعد الاختبار للدارة عمليا ظهرت مشكلة فى شاشة الأظهار بسبب المسح الزمنى وتحتاج الى تحسين البرنامج الخاص بالمسح من متخصص برمجيا.

اثبتت الدارة صلاحية العمل كمحكم لدرجة الحرارة الا انها تحتاج الى تطوير فى البرنامج لاداء افضل، ويمكن تطوير البرنامج المشغل من ادائها لجميع عمليات التحكم الاخرى كالتحكم فى المستوى والتحكم فى الضغط.