

بسم الله الرحمن الرحيم

Sudan University of Science and Technology
College of Graduate Studies

A STUDY OF REAL TIME CONTROL APPLICATIONS

**A Thesis Submitted to the Partial Fulfillment for the Requirements
of the Degree of MS.c In Control & Microprocessor Systems**

Submitted By:

YASIR BABIKER HAMEDAN

Supervised by:

DR. EISA BASHEIR

Feb-2007

List of figures:

Figure (1-1)	Requirements, Specification and Implementation.	7
Figure (1-1)	The implementation process and main challenges.	10
Figure (1-2)	Classifications for the most well-known dynamic scheduling algorithms for uniprocessor systems.	15
Figure (2-1)	Ideal Sampling of a Continuous Time Signal.	30
Figure (2-2)	Effect of Sampling in the Frequency Domain.	30
Figure (2-3)	Spectrum of the Sampling Signal contains overlapping.	31
Figure (2-4)	Frequency Domain Characteristics of the ZOH.	33
Figure (2-5)	Models for Digital Control System Design.	34
Figure (2-6)	Input-Output Representation for I/O Devices.	42
Figure (2-7)	Implementation of Integral action as automatic reset.	44
Figure (2-8)	Illustrate the response of the controller having anti-windup.	47
Figure (2-9)	PID Controller with anti-windup Integrator	47
Figure (3-1)	A Simple Controller with two inputs	52
Figure (3-2)	A detailed Representation of a Controller	53
Figure (3-3)	Two ways of Synchronizing Inputs and Outputs	56
Figure (3-4)	A Series and Parallel form of Implementation of a Digital filter	57
Figure (4-1)	The Electric Circuit of armature and free body of the rotor	61
Figure (4-2)	The closed loop system with disturbance	63
Figure (4-3)	The Response to step input when $k_p=1.7$	64
Figure (4-4)	The Response to step Disturbance when $k_p=1.7$	64
Figure (4-5)	The Response to step input when $k_p=1.7, k_i= 20$	65
Figure (4-6)	The Response to step Disturbance when $k_p=1.7, k_i= 20$	65
Figure (4-7)	The Response to step input and step Disturbance when modifying the gains to $k_p=1.7, k_i= 200$	66
Figure (4-8)	The Response to step input and step Disturbance with derivative term $k_D= 1.5$	66
Figure (4-9)	The Ideal response to step input and step disturbance after tuning the gains to $k_p=17, k_i=600$ and $kD=1.5$	67
Figure (4-10)	The d.c motor Simulink model	68
Figure (4-11)	The linear and Nonlinear Model	69

Figure (4-12)	The Discrete-time PI Control Law	70
Figure (4-13)	The Simulink Model used for the Tuning	70
Figure (4-14)	The Real time Model	71
Figure (4-16)	The Position Encoder	72
Figure (4-17)	The Integrator anti wind up	72
Figure (4-18)	The Limit Switch Handler	73
Figure (4-19)		
Figure (4-20)		
Figure (4-21)		
Figure (4-22)		
Figure (4-23)		