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1. Introduction

Virtually all means of wireless and wireline speech communication are, or are becoming, digital. Digital coding of
speech for transmission or storage clearly has advantages over traditional analogue methods. In digital data
communication or storage systems, information is transmitted or recorded as a series of binary digits -the receiver or
player must only distinguish between a one or zero to exactly recover the original information. In digital voice
systems the information is the human voice. Digital speech coding algorithms are judged by their ability to quantize
(digitize) speech accurately for transmission and then perform the reverse at the decoder. In other words, the original
analogue speech signal must be accurately recovered at the receiver. Sounds simple, however, without compression
guantized speech can require significantly more bandwidth than analogue speech. For wireline or wireless telecom
applications, the speech extends from 300Hz to 3300Hz. If an analogue signal in this band is quantized using a linear
Analogue to Digital Converter (ADC) sampling just above the Nyquist rate, say 8kHz, with 256 quantization levels (8
bits) the resulting data rate is 64kbits per second. Without exotic modulation/coding, the bandwidth (BW) for the
digitally encoded signal is nearly twenty times the original analogue signal. Such BW consumption is not practical,
particularly for wireless applications.

Engineers working in the field of Speech Coding have been actively searching for methods to reduce the
bandwidth consumed by quantized speech signals. Early algorithms attempted to take advantage of the human ear’s
adaptive dynamic range. The human ear has a built in ability to become more or less sensitive to audible signals—
the ear can hear sound pressure levels (SPL) as low as 0dB SPL (threshold of human hearing) to 120dB SPL (on-set
of pain) yet at any one time the dynamic range of human hearing is generally considered to be about 40dB. In other
words, we have a difficult time hearing someone whispering at a rock concert. Some speech coding algorithms
exploit this phenomena by using a greater number of progressively smaller quantization levels for low amplitude
signals and fewer, more coarse quantization levels for large amplitude signals. This is known as non-uniform
quantization. Non-uniform quantization is used in the Public Switched Telephone Network (PSTN) where it is called p-
law Pulse Code Modulation (PCM). A slightly more complex approach takes advantage of strong correlation between
adjacent speech samples, quantizing the amplitude difference (delta) between two samples as opposed to the entire
sample amplitude. This difference signal requires fewer quantization levels for the same signal quality and
consequently, reduces the required bandwidth. Algorithms employing this technique are classified under the broad
category of differential quantization or differential PCM (DPCM). Further bandwidth conservation is possible through
more complex algorithms. For example, combining adaptive quantization with DPCM results in the commonly used
coding algorithm, adaptive DPCM (ADPCM).



Delta Modulation (DM) and Continuously Variable Slope Delta modulation (CVSD) are differential waveform
quantization techniques. Both employ two level quantizers (one bit). CVSD is basically DM with an adaptive
quantizer. Applying adaptive techniques to a DM quantizer allows for continuous step size adjustment. By adjusting
the quantization step size, the coder is able to represent low amplitude signals with greater accuracy (where it is
needed) without sacrificing performance on large amplitude signals.

CVSD is used in tactical communications where “communication qualityl" is required yet the option for security
must be available. MIL-STD-188-113 (16kb/s and 32kb/s), and Federal Standard 1023 (12kb/s CVSD) are examples
of a tactical communication systems using CVSD. With the tremendous worldwide growth in wireless technology,
secure communication is becoming important to everyone. In addition to point-to-point communication, CVSD is
commonly used in digital voice recording/messaging and audio delay lines.

This paper attempts to describe CVSD quantization, focusing on its application to coding of speech. Before
discussing the details of CVSD, the basics of uniform and non-uniform quantization (non-adaptive) will be reviewed.
Next, the subject of differential quantization will be explained, showing that DM and CVSD are equivalent to one bit
DPCM and ADPCM, respectively. Finally, some application suggestions for CML CVSD codecs will be presented.

2. Waveform Quantization [1, 3,5, 9]

Waveform quantization is a process of assigning discrete levels to a sampled analogue signal. In the context of this
paper the signal of interest is speech, although the concepts are applicable to signals in different frequency bands.
The term “quantization” implies a relationship between the amplitude of a discrete sample and its numeric value. This
relationship may be linear, non-linear, or differential.

2.1 Sampling [5, 9]

Before a signal can be quantized it must first be sampled. Sampling is the act of instantaneously capturing the level
of a continuous signal at some predetermined rate. This predetermined rate is called the sampling frequency. As the
sampling rate increases, the sampled signal begins to approximate the original continuous signal. As the sampling
frequency decreases, samples move further apart in time, eventually the original signal cannot be reconstructed from
the sampled version. The limit on how far apart these samples can be, without losing information, is the basis for
Shannon's sampling theorem.

Shannon's sampling theorem [5] was originally stated as follows: "If a function f(t) contains no frequencies higher
than f cycles per second it is completely determined by giving its ordinates at a series of points spaced (1/2f) seconds
apart." A mathematical version of this theorem can be obtained by convolving the Fourier transform of the signal to
be sampled with the Fourier transform of an infinite sequence of impulse functions
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Where, Fg(w)= sampled signal spectrum
F(w) = original signal spectrum
Sw) = spectrum for a sequence of impulses
w=2rf (radian frequency).

The result of the convolution in equation (2) is the original signal spectrum repeated at multiples of the sampling
frequency, see Figure 1. Notice that if the sampling frequency is less than twice the bandwidth of the original signal
the replicas centered at multiples of the sampling frequency will overlap and distort the original. This undesirable
phenomenon is aliasing. To avoid aliasing,

fo > 2B. 3)

' communication quality is a qualitative expression widely considered synonymous with “acceptable speech
communication.” It is not intended to imply “high-fidelity,” only that intelligible conversation can take place.



Where, fs= sampling frequency in Hz
B = bandwidth of original signal in Hz.
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Figure 1: Fourier transform of (a) continuous time signal and (b) sampled signal.

Shannon's sampling theorem is mathematically accurate. Although, in most cases it is nhot practical to sample a
signal at exactly twice it's highest frequency. Band-limiting is necessary to avoid aliasing. For f;=2B the band-limiting
filter must have a so called “brick wall” roll-off at frequency B. A filter that matches this requirement is physically
unrealizable. Several factors contribute to the actual sampling frequency used. Generally there is a compromise
between the complexity of the band-limiting filter versus the cost of the analogue to digital converter (ADC). As fg
becomes closer to 2B, the band-limiting filter requires more stages to give the desired roll-off. As fsincreases, the
required conversion time necessitates a faster ADC. Cost for ADCs is inversely proportional to conversion time, as
conversion time decreases, cost rises.

2.2 Uniform Quantization [3, 4, 9]

Figure 2 illustrates the transfer characteristic of a seven level uniform quantizer. To represent the quantized output
g(n) as a binary number would require 3 bits. Once a signal has been sampled it is discrete in time. However, the
amplitude remains continuous. The quantized version of a signal is obtained by applying the sampled signal to a
binary encoder where the discrete voltage levels are assigned to the nearest binary numbers. The complete process,
combining sampling and amplitude quantization, is known as PCM.
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Figure 2: Uniform quantizer transfer characteristic.

The noise introduced by PCM is primarily due to the rounding to the “nearest” binary number. If a signal is
quantized to eight levels (3 bits) using a quantizer transfer characteristic similar to the one shown in Figure 2, the
finest resolution is the full scale magnitude divided by eight. In general,

A:or. 4)

Where, A = full scale amplitude
n = number of bits per sample
a = difference between quantization levels (i.e. finest resolution).

The uncertainty error due to rounding is based on the assumption that there is a continuous range of values
within a, all of which are equally likely to have been the actual value of the original signal (uniform distribution). The
error signal ¢is the difference between the original signal amplitude and the quantized sample value. As a result, the
mean square uncertainty error can be solved for by finding the expected value of error squared over the range of -a/2
to a/2

a
2
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Where, E = expected value operator
€ = difference between actual and quantized signal levels.
Performing the integration in equation (5) yields an expression which is equivalent to quantization noise power
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Taking the square root of both sides gives the root mean square (RMS) noise voltage
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The maximum signal-to-noise ratio (SNR) for a uniformly quantized signal can be calculated by finding the ratio
of the full scale quantization level to the noise voltage in equation (7). The full scale quantization level is simply the
total number of quantization levels multiplied by the minimum quantization increment a

a2"
Sout,,, = (2 )- (8)
Where, n = number of bits in quantizer.
The ratio of equations (7) and (8) yields the SNR
2n
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In dB,
SNRjg =4.77+ 6 02n. (20)

Equation (10) is an objective measure of quality in systems employing uniform quantization. It should be noted:
the SNR calculated in equation (10) is a theoretical maximum. In practice other factors (e.g. power supply noise) tend
to reduce the final SNR. Also, the human voice is considered to have about 40dB of dynamic range, however, during
most conversations it is typically about 20dB down from maximum. In other words, we generally do not shout during
normal conversation. Consequently, the average signal to noise ratio for uniformly quantized speech is about 20dB
less than what would be calculated using equation (10).

Another objective measure of quality which can be derived in a similar manner is dynamic range. Dynamic range
pertains to the resolution of a quantization scheme. It is the ratio of the full scale amplitude to the smallest quantized
amplitude change,

N
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In dB,
DRy =6.02(n- 1. (12)

2.3 Non-uniform Quantization [1, 7, 9]

To this point the discussion has been based strictly on uniform quantization (linear speech coding). That is,
waveforms are quantized such that all signal levels have the same resolution. An alternative to linear quantization is
to make a fine for low level signals and coarse for high level signals, introducing a non-uniform quantizer
characteristic. This type of quantization can result in improved dynamic range for a given number of bits and
effectively raise the SNR for lower level signals. The drawback is lower maximum SNR—equations 9 and 10 are not
valid for non-uniform quantization. Figure 3 shows a transfer characteristic for a seven level non-uniform quantizer.
Notice, when compared to the uniform quantizer transfer characteristic shown in Figure 2, there are three
guantization levels for the input s(t) between zero and one, where there is only one with the uniform quantizer.
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Figure 3: Non-uniform quantizer transfer characteristic.

A complete digital communication system, incorporating non-uniform speech coding, compresses the quantized
signal at the transmitter then expands the signal back to linear form at the receiver. The compressed signal requires
fewer bits and therefore consumes less BW. Ideally, the expander transfer function is the exact inverse of the
compressor and is able to reproduce the original uncoded analogue signal. In literature pertaining to
telecommunications, the words compressor and expander are generally combined in to a single word; compandor.

Companding is one of the most popular forms of non-uniform quantization. When compared to uniform
quantization, it allows for bandwidth compression without degradation in dynamic range, at the expense of peak
signal to noise ratio. For example, a signal uniformly quantized to 14 bits, using equations (10) and (12), would have
a peak SNR and DR of approximately 89dB and 78dB respectively. If the same signal is non-uniformly quantized
(compressed) using only 8 bits (256 levels), the minimum quantization level can be set such that DR of 78dB can be
retained, although the peak SNR will be degraded. Degradation in the peak SNR is due to the course quantization
levels used for the large amplitude signals (where fine quantization is not necessary). Low amplitude signals are
quantized at finer resolution (more steps, where it is necessary). Consequently, the SNR at low signal levels is
improved when compared to uniform quantization with the same number of levels. Essentially, companding strives to
make SNR constant over the dynamic range of the quantizer.

2.3.1 p-Law Companding [1, 9]

Most forms of non-uniform quantization are derived from a logarithmic transfer function. That is, the output signal is
proportional to the log of the input signal. In North America and Japan, digital telecommunications networks employ
p-law companding as the standard for PCM encoding (i = 255 for North America). The general form of the transfer
characteristic is:

(L px)
X) = Si _— 13
Y09 = sigri 3= == (13)
Where, -1<x<1
X = input signal
y(x) = compressed output signal
sign(x)= polarity of input signal.



2.3.2 Uniform versus Non-uniform Quantization [7]

An accepted method of objectively measuring quality in signal processing systems is SNR. In the context of digital
coding this would more accurately be called: signal to quantization noise ratio (SQR). Equation (10) was derived to
calculate the SNR for uniform quantization assuming maximum input signal. To find SNR for input signal amplitudes
less than maximum equation (10) must be rewritten

O
SNRg = 4.77+ 6 02nt+ 2(logDi
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Where, § = input signal level
Suax = maximum signal level.

When the quantization characteristic is not uniform (14) is no longer valid. To clarify the performance of
companded quantization, the SNR must be calculated for a full range of input signal levels. For p-law companding
the signal to noise ratio is given by the following equation [9],

O O
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It should be noted that as p - 0, equation (15) is equivalent to equation (14), thus p = 0 implies uniform
guantization. Figure 4 compares SNR versus relative input signal power for 256 level non-uniform quantization
(1 = 255) and 256 level uniform quantization.
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Figure 4: SNR versus input level for 8 bit  p-law and 8 bit uniform quantization.



2.4 Differential Quantization [4, 8]

Differential quantization is a coding technique where the difference between the present sample and the predicted
value for the next sample is quantized. This type of quantization is advantageous because the difference signal
dynamic range (variance) is less than the unprocessed input signal. Consequently, fewer quantization levels are
required to retain the same Signal-to-Noise Ratio (SNR). Alternatively, the number of quantization levels can remain
the same allowing the difference signal to be encoded using all the available bandwidth resulting in greater resolution
and improved signal quality.
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Figure 5: Differential quantization block diagram.

Figure 5 is a block diagram displaying a differential quantization system. All signals are represented in discrete
time notation implying that x(n) is the discrete time version of x(t). Notice the decoder is in the feedback path of the
encoder. Thus, the decoder is performing the inverse of the encoder. The block labeled Q converts the difference
signal d(n)in to a binary representation suitable for transmission and the block labeled Q™ does the inverse. In reality,
the process of converting d(n) to c(n) and back to dgop(n) is a significant factor in the non-ideal behavior of differential
quantization. Nevertheless, fundamental analysis of the system is simplified by assuming blocks Q and Q™ cancel.
Employing this assumption, the transfer function of the encoder in z-domain terms

C(2

H 2)=——=Q(29[1- . 16
enc(2) X(2) Q(2[1- R3] (16)
And the decoder transfer function is:
Xop(2) 1
Hpec(2) = P = . (7)
C(? QI1-RHY
If Dop(z) LJD(z), then Xqp(z) JX(z)and the entire system transfer function can be written as,
H(2) = Hene(2 Hpec( 9 =1. (18)

Although equation (18) is based on several assumptions, it shows a differential quantization system patterned
after the topology displayed in Figure 5 can be made to produce an output signal which approximates the original
input signal. The quality of the approximation is what distinguishes various differential quantization schemes.
Generally, high quality approximation does not come without a price.



A crucial element in differential quantization is the predictor P(z) The output xs(n) of P(z)is a weighted sum of
past input samples. The general form is equivalent to a finite impulse response (FIR) filter

P
Xe() =Y ax(n- B. (19)
k=1

Where, P = order of predictor
a, = weighting factor (coefficient)
xp(n) = output of predictor

Xg(n) = dg(n) + Xe(n) (input to predictor).
Applying the z-transform to equation (19) yields the transfer function for the predictor

_Xp(2 _
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Equations (19) and (20) show that the predictor output is a linear combination of past inputs giving rise to the
term “linear prediction”. Non-linear predictors (non-linear combination of past input samples) have been studied,
however, due to complexity and stability issues, their popularity is limited.

The coefficients a, are calculated such that P(z)will provide a reasonably accurate model for the behavior of
human speech. In 1966 a paper was published by McDonald [6] suggesting coefficients, based on normalized
autocorrelation of human speech samples, for predictors of order one to ten. Later, in 1972, Noll [4] published similar
data. These two papers are generally referenced in determination of predictor coefficients. Assuming that P(z) does
provide a reasonably accurate model for human speech, xo(n) Ox(n) and d(n) — 0. In other words, a good predictor
should minimize the difference signal d(n). This is the basis for differential quantization. In most DM algorithms the
predictor order P is set to one.

The potential for instability in differential quantizers exists in the encoder. As mentioned early, equation (20) is
the transfer function of an FIR filter. One of the significant characteristics of FIR filters is, by definition, they are
stable (the transfer function has only zeros). However, when an FIR is placed in a feedback path, as is the case with
the encoder, the zeros become poles—if one of these poles finds its way outside the unit circle the differential
guantizer will be unstable.

3. Delta Modulation [1, 4, 6, 8, 10]

DM is a differential quantization scheme that uses two level quantization (i.e. one bit quantizer). By using a single bit
to represent each sample, the sample rate and the bit rate are equivalent. Consequently, sample rate is directly
related to signal quality (SNR). Also, BW of the input signal and band-limiting of the output are significant factors in
determining signal quality.

The first DM algorithm was conceived in 1946. During the last 50 years, two algorithms; Linear DM (LDM) and
CVSD, received a significant amount of attention from those interested in efficient methods to digitize speech. LDM is
the most fundamental, least complex form of DM. Hence, this tutorial will attempt to provide an understanding of
LDM as a foundation for understanding more complex DM algorithms. The CVSD algorithm, an accepted standard in
the tactical community and finding a growing number of applications in “point-to-point” wireless applications, will also
be covered.



3.1 Linear DM [1, 4, 6, 8]

The predictor P(z)in LDM is first order and the quantizer Q is two level. Figure 6 is a flow diagram describing the LDM
encoder and decoder algorithms.

ENCODER DECODER
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do(m
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Figure 6: LDM block diagram.

The predictor is shown as a single tap FIR filter with transfer function P(z) = aZ*. In the encoder, the transfer
function between dg(n) and xp(n) can be expressed in the z-domain terms as

-1
Xp(2) __az - (21)
Do(2d 1-az
In the decoder, the transfer function between dqp(n) and Xgp(n) is
Xop(Z
oo(2 _ 1 (22)
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Equations (21) and (22) represent discrete time integrators (if a = 1). If a < 1 they become damped or lossy
integrators. McDonald [6] and Noll [4] both suggest a = 1 for optimum prediction gain. A pure integrator (a = 1) will
cause bit errors to propagate longer than if a < 1. In practice, a value of a< 1 is preferred.

The quantizer Q in figure 6 functions like a comparator. When the input d(n) exceeds zero it outputs a logic one,
when the input is less then zero the output is a logic zero. Hence, the output of Q is a single bit indicating the sign of
the magnitude of d(n). The inverse quantizer Q! converts logic levels to delta do(n) as shown in the table below.

signof d(n) | c(n) | dy(n)
- 0 -A
+ 1 A

Table 1: Sign of d(n) with corresponding logic levels and deltas.

The value of A plays an important role in the performance of LDM. If A is relatively small, tracking of slowly
changing, low amplitude signals is quite good at the expense of poor tracking for fast, abruptly changing signals.
When DM is not able to keep up with the input signal a phenomena called slope overload is exhibited, as shown in
Figure 7.
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Figure 7: Slope overload in LDM.
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Increasing the value of A can lessen the effects of slope overload but creates a new problem; granular noise.
With Ato large, low amplitude signals will not be quantized at fine enough levels and they appear as idle channel
noise , see Figure 8. The idle channel pattern is simply an alternating one-zero sequence indicating the input signal
amplitude is not changing. Since an alternating one-zero bit pattern has a mean value of zero, the signal out of the

decoder will integrate to zero.

xo(M)

X(t)

T

GRANULAR NOISE

Figure 8: Granular noise in LDM.
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3.2 CVSD[2, 4, 10]

Issues with granularity and slope overload can be drastically reduced by making dynamic adjustments to the
guantizer step size A. Adaptive DM (ADM) algorithms attempt to do this by making A small for slowly changing
signals and large for rapidly changing signals. The most publicized ADM algorithm is known as CVSD. It was first
proposed by Greefkes and Riemens in 1970 [2]. In their CVSD algorithm, adaptive changes in A are based on the
past three or four sample outputs (i.e. ¢(n), c(n-1), c(n-2), c(n-3). Figure 9 and Figure 10 show flow diagrams of the
algorithms for the encoder and decoder respectively. Notice only the last three samples of c(n) are used here.

x(n) d(n) c(n)

Xp(N)

X qoF (n)

LPF

Figure 10: CVSD decoder block diagram.

The block labeled Q™ , previously shown in Figure 6, has been replaced by two cascaded one sample delays (z*)
and logic to determine when three consecutive ones or zeros have occurred. The minimum and maximum step
height is set by Ayin. and Ayax, respectively. When strings of three consecutive zeros or ones have not occurred for a
period of time long enough for the output of the integrator |, to decay to near zero, the algorithm is equivalent to LDM
(section 3.1). The time constants for the integrator |, and integrator |, are typically 4 ms and 1 ms respectively. In
CVSD literature integrator I, is referred to as the principle integrator and integrator |, as the syllabic integrator. The so
called syllabic integrator derives its name from the length of syllable. Actually a syllable is about 100 ms in duration,
however, pitch changes are on the order of 10 ms. Consequently, 4 ms seems to work best for the CVSD syllabic
(pitch) time constant. The block labeled L performs simple level conversion (i.e. ¢(n) =1, L outputs 1; c(n) =0, L
outputs -1). This CVSD algorithm is also known as “Digitally Controlled DM” [10].

Figure 11 displays the output of the integrator I, (xp(n) in the encoder and Xpp(n) in the decoder). When compared
to Figure 7 and Figure 8 slope overload and granular noise are reduced.
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Figure 11: CVSD quantization noise.

3.3 Performance Measurement of DM [1, 4]
The maximum SNR for DM speech coders is [1]

0§ O
SNRg =10logE—2—0- 140, (23)
Ofgy 20

Where, fs = data rate (sample rate)
faw = signal BW (cutoff frequency of LPF)
f = signal frequency.

Most literature on DM coding agrees on the terms involving fs, faw, and f in equation (23) but most do not agree
on -14 dB. This term varies from -17.0dB to -11.7dB depending on a variety of different input signals and
assumptions about environment. Nevertheless, equation (23) is considered a maximum because it assumes no slope
overload and minimum granular noise, i.e. optimum step size.

The adaptive behavior of CVSD results in a SNR versus input level characteristic similar to non-uniform
guantization (mentioned in section 2.3). This non-linear SNR characteristic is due to companding, where the
guantization level (slope) is adjusted to a larger or smaller value according to past pitch changes of the input signal.
The number of past samples (bits) used to make a prediction is normally three or four. Four bit companding has
proven to be most effective for data rates greater than 32kb/s, three bit companding seems to work better for data
rates less than 32kb/s.

Figure 12 shows a typical SNR versus input level characteristic for 32kb/s CVSD (four bit companding algorithm,
input signal = 820Hz sinewave). Equation (23) predicts a maximum SNR of 27.6dB which is nearly met in Figure 12
for and input signal level of -15 dbmO (0dBmO = 489 mVrms). Above and below the -15dBm0 input level granular and
slope overload noise start cause distortion. Finally, It should be noted that CVSD does not perform well with
continuous tone or data input signals, particularly at data rates below 32kb/s.

13
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Figure 12: Measured SNR versus input level for 32kb/s CVSD (input = 820Hz sinewave).

SNR is the most used method to objectively quantify performance of speech coding algorithms. However, it does
not always correspond with perceived quality, particularly for differential and adaptive algorithms using actual voice
as the input. In addition, it is difficult to make reliable SNR measurements in the presence of random bit errors. In an
effort to quantify the perceived quality of a speech coding algorithm, Mean Opinion Score (MOS) testing was
developed [4]. Table 2 summarizes the five point scale used to judge quality and impairment.

Number | Quality Impairment
5 excellent | imperceptible
4 good perceptible but not annoying
3 fair slightly annoying
2 poor annoying
1 bad very annoying

Table 2: Mean Opinion Score testing guidelines.

An MOS rating of 4 to 4.5 is considered Toll Quality (equivalent to commercial telephony). Where as
Communication Quality MOS ratings are 3 to 4 (barely perceptible distortion, but no degradation in intelligibility).

Figure 13 compares MOS ratings for p-law PCM (the standard for Toll Quality), CVSD and ADPCM. Notice CVSD
performs as well or better than both p-law PCM and ADPCM in the presence of bit errors. Specifically, CVSD retains
quite good MOS ratings at bit error rates exceeding 1%, and at 10% has an MOS rating of 3 (Communication
Quality). It is this robustness to bit errors (channel noise) that makes CVSD an ideal solution for many wireless
speech communication applications.
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Figure 13: MOS versus bit error rate for ADPCM,  p-law PCM, and CVSD from [4].

4. Summary

CVSD has several attributes that make it well suited for digital coding of speech. One-bit words eliminate the need for
complex framing schemes. Robust performance in the presence of bit errors make error detection and correction
hardware unnecessary. Other speech coding schemes may require a digital signal processing engine and external
analogue to digital/digital to analogue converters to convert the analogue signal in to a form that can be processed
digitally—the entire CVSD codec algorithm, including input and output filters, can be integrated on a single silicon
substrate. Despite this simplicity, CVSD has enough flexibility to allow digital encryption for secure applications.
Finally, CVSD can operate over a wide range of data rates—it has been successfully used from 9.6kb/s to 64kb/s. At
9.6kb/s audio quality is not particularly good, however, it is intelligible. At data rates of 24kb/s to 48 kb/s it is judged
as quite acceptable. And above 48 kb/s it is comparable to toll quality. All of these attributes make CVSD attractive to
wireless telecommunication systems (e.g. digital cordless telephones, digital Land Mobile Radio). The defence
industry has been using CVSD for decades in wireline and wireless systems as specified in Mil-Std-188-113.

More recently, Federal Standard 1023 proposed CVSD for 25kHz channel radios operating above 30MHz. Figure 14
is a block diagram showing a CVSD Codec (FX609) in a digital mobile radio system.
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Figure 14: Digital wireless system incorporating CML’s FX609 CVSD Codec.

This tutorial has attempted to shed some light on the fundamental aspects of CVSD. It has shown that CVSD is a
differential adaptive quantization algorithm with one bit coding and first order prediction (one bit ADPCM). In addition,
objective and subjective methods of measuring signal quality showing that CVSD performs quite well in the presence
of bit errors (noisy channel) have been presented.
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