

Dedication

To those who work in
silence for others,
sake to my family, my
parents, my friends,

my teachers and
colleagues.

Acknowledgement

I give all my thanks
to my teachers who

helped me a lot, and
my great thanks to
Dr. Alaa Alsaffar
Who paved the way
for me.

And my great thanks
to
Dr. Ashraf Gasm
Elseid
Who supervised me.
I also extend my
thanks and
appreciation to
Sudan University.

Abstract

This project report presents the implementation and development of microcomputer interface to indicate positions of objects by GPS (Global Positioning System). The microcomputer interface use microcontroller and work based on multiplexer concept. The MCS family is used by microcontroller for control the microcomputer interface. It can receive in 8 channels data which is connected to GPS to indicate the position. The development program is written in assembly language

The microcomputer interface has one output signal for sending data to microcomputer that has function to indicate positions by each GPS. The part of display program is written in C –language, using MATLAB for simulation

مُسْتَخْلِص

Contents

Dedication	I
Acknowledgement	II
Abstract	III
目次	IV
Contents	V

Chapter One: Global Positioning System (GPS) Overview

1.1 Introduction	1
1.2 Concept of Global Positioning System GPS	2
1.3 GPS uses in our day life	3
1.3.1 GPS Elements	4
1.3.2 Type of GPS receiver	7
1.3.3 GPS working principles	7
1.4 Main Status of GPS	9
1.5 Accuracy of GPS	11
1.6 Preliminary researches	15
1.7 Thesis Organization	17

Chapter Two: GPS Signal

2.1 Introduction	18
2.2. Overview of SPS ranging signal RF characteristics	19
2.2.1 GPS navigation message	19
2.2.2 C/A code generation	21
2.2.3 Code Modulation	22
2.2.4 Navigation message structure	23
2.3 National Marine Electronics Association (NMEA) Protocol	24
2.3.1 Introduction	24

2.3.2 (NMEA) Standard	25
2.3.3. Hardware connection	25
2.3.4 NMEA Sentence	26
2.4 Signal Simulation Results	33

Chapter Three: GPS Interface

3.1 Introduction	36
3.2 The Objective of Design	36
3.3 GPS Receiver Architectures	38
3.4 Microcontroller & Multiplexing	42
3.4.1 Microcontroller	42
3.4.2 Multiplexing	43
3.4.3 8-bit Microcontroller "AT89C51"	45
3.5 Simulation Results	50

Chapter Four: Data Communication

4.1 Project Description	54
4.2 Introduction to Communication	54
4.2.1 Communications channels	55
4.2.2 Serial communications:	56
4.3 Serial interface components	58
4.3.1 Serial Port "USART"	58
4.3.2 RS-232C Serial Data Standard	60
4.4 Initialization of port	62
4.5 Software Required	65
4.5.1 C language	65
4.5.2 Idea of program	66

Chapter Five: Conclusion and Recommendation

5.1 Thesis Conclusion	70
5.1.1 Coordinates Systems	70
5.1.2 Differential "GPS"	71
5.1.3 Result Analysis "from simulation"	72
5.2 Design Applications	73

5.2.1 Problems confront this project	74
5.2.2 Suggestions for Future Researches	75

References	76
-------------------	-----------

APPENDIX (A):	79
APPENDIX (B):	85