

Acknowledgment

My thanks firstly go to God without whose help none of this could have been done. True thanks to ustaz ABDALLA SALIH ALI, for his effective contribution in success of this research and the preparation of qualified future engineers. Also I would like to extend my thank to NEC for granting this scholarship and nevertheless the director of NEC for providing me with valuable data and latest technical consultancy.

Last but not the least my gratitude and thanks go to all those who have in one way or the other helped me in bringing thesis to success mainly the electrical department staff.

Contents

		Page
Acknowledgement		i
Contents		ii
List of table		iv
List of figures		v
Abstract		vi
目錄		vii
Chapter one	introduction	
1.1	Introduction . . .	1
Chapter two	stability and power control	
2.1	Steady state characteristic	4
2.2	Power factor control	4
2.3	Power angle characteristic	6
2.4	Swing equation	8
2.5	Small disturbances	10
2.6	Equal area criteria	10
Chapter three	Power system control	
3.1	Introduction	11
3.2	Generator voltage control	11
3.3	Mathematical description of synchronous machine	12
3.4	Active power and frequency control	15
3.5	Reactive power and voltage control	15
3.6	Generator model	16
3.6.1	Prime mover model	18
3.6.2	Load model	18
3.7	Modeling of generator control system .	20
3.7.1	Governor model	20
3.7.2	Automatic voltage regulator model	21
3.8	Types of excitation system	22
3.8.1	Brushless excitation system	22
3.8.2	Static excitation system	22
3.9	Automatic voltage regulator	23
3.10	AVR modeling	23
3.10.1	Modeling of excitation system	24

3.10.2	Amplifier model.	24
3.10.3	Exciter model	25
3.10.4	Generator model	26
3.10.5	Sensor model	27
3.11	Automatic voltage regulator and firing circuit	28
Chapter four		Controllers
4.1	Introduction	31
4.2	Control Action	31
4.2.1	Two position or on off control action	31
4.2.2	Proportional control action.	31
4.2.3	Integral control action	32
4.2.4	Derivative control action	32
4.2.5	Proportional -plus-integral control action	33
4.2.6	Proportional -plus- derivative control action	33
4.2.7	Proportional -plus-integral-plus-derivative action	34
4.3	PID Implementation	35
4.4	Simulation of the AVR with PI	37
4.4.1	Root locus	37
4.4.2	Frequency Response	39
4.5	Simulation of AVR with PID	45
4.5.1	Root Locus	45
4.5.2	Frequency Response	48
4.6.1	Matlab Program with PI	54
4.6.2	Matlab Program with PID	55
Chapter Five		Results and conclusion
5.1	Results	56
5.2	Conclusion	57
5.3	Recommendation	58
	References	59

List of Tables

Table No.	Title	Page
4.1	Constant of Generator and AVR	38
4.2	Constant of AVR with PID	47
5.1	Root Locus Result	56
5.2	Results of Close Loop Frequency Response of AVR with and without PID	56

List of figures

Fig. No.	Title	Page
Fig(1.1)	Khartoum Grid	3
Fig(2.1)	Per phase circuit of synchronous generator	5
Fig(2.2)	Variation of field current of constant power	6
Fig(3.1)	LFC and AVR control loops	12
Fig(3.2)	Stator and rotor circuits of synchronous machine	14
Fig(3.3)	Generator block dig ram	17
Fig(3.4)	The block dig ram for simple non reheat turbine	18
Fig(3.5)	Generator load block diagram	19
Fig(3.6)	Generator load diagram	19
Fig(3.7)	Watt governor	21
Fig(3.8)	Amplifier block diagram	24
Fig(3.9)	AVR arrangement	25
Fig(3.10)	Exciter block	25
)		
Fig(3.11)	Generator block diagram	26
)		
Fig(3.12)	Sensor block diagram	27
)		
Fig(3.13)	AVR block diagram	27
)		
Fig4.1)	Circuit diagram of PID	36
Fig(4.2)	PID block diagram	37
Fig(4.3)	Root locus of AVR with PI	39
Fig(4.4)	Peak Response After Adding PI Controller	41
Fig(4.5)	Settling Time After Adding PI Controller	42
Fig(4.6)	Rise Time After Adding PI Controller	43
Fig(4.7)	Steady State After Adding PI controller	44
Fig(4.8)	AVR with PID	45
Fig(4.9)	Simplified Block Diagram of AVR with PID	46
Fig(4.10)	Root Locus of AVR with PID	48
)		

Fig(4.11	Peak Response After Adding PID controller	50
)		
Fig(4.12	Settling Time After Adding PID controller	51
)		
Fig(4.13	Rise Time After Adding PID controller	52
)		
Fig(4.14	Steady State After Adding PID controller	53
)		

ABSTRACT

DR Sharif power station at Khartoum North consists of two turbines 30MW each.

The AVR of these machines consists of amplifier, generator, exciter and sensing unit. The excitation system has been chosen to the topic due to the problems faced by the operators in the power station .These problems include, aging problems of the final control element, feedback signal problem and load increase /decrease problems. The excitation system of the mentioned generator includes PI controller, so, PID controller was added instead of PI controller to avoid the problem mentioned previously.

To add the PID controller, it was implemented experimentally, tested and its response has been found.

The excitation system circuit test was simulated by MATLAB before adding the PID controller with different inputs.

Finally the PID controller has been added to the AVR and then simulated with different inputs disturbances and the responses were compared.

And also we use root locus methods before and after adding PID and the results were also compared.

5 of 5

محطة كهرباء د.شريف بالخرطوم بحري تتكون من وحدتين كل وحدة تنتج ثلاثة ميغاواط. احد المشاكل التي تواجه المحطة هي التارجح في الجهد تنتج منظومة الاتارة، منظومة الاتارة في هذه المحطة تتكون من الحاكمة التناسبية التكاملية ، في هذا البحث تم استعمال حاكمة التناسب- التكامل - التفاضل ، تمت محاكاة دارة التحكم التلقائي للجهد بدون أي اضافة لها وباستخدام ثوابت المولد و التحكم التلقائي للجهد ذك باستخدام دالة درجية ونتج منها منظومة غير مستقرة ذك تم اضافة حاكمة التناسب- التكامل - التفاضل الى منظومة التحكم التلقائي للجهد وباستخدام نفس ثوابت التناسب- التكامل - التفاضل حصل على الاستجابة المثلثي لدالة درجية