

بسم الله الرحمن الرحيم

**SUDAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY**
COLLEGE OF GRADUATE STUDIES
MECHANICAL ENGINEERING DEPARTMENT

**Proportions of an axial
Wind Turbine to be used
in North of Sudan**

*Thesis submitted in partial
fulfillment to the college of
engineering for the requirement of*

(M. Sc. (mechanical

:By

(Badri Mohamed ALfaki (P.G.D

-:Supervised By

Prof. William Ibrahim Asaad

2006

Abstract

This study has been carried out to exploit the wind energy to lift water from deep well for domestic use in the north of Sudan where the wind is available.

The result of this study gave the estimation of proportions of five blades with tubes on the concave sides with supporting horizontal axis against the wind to achieve the task.

الخلاصة

تم اعداد هذه الدراسة لاستغلال طاقة الرياح لرفع مياه جوفية للاستخدامات المنزليه فى شمال السودان حيث الرياح متوفره

هذة الدراسه خلصت الى حساب ابعاد تربیزه هوانیه تتكون
من خمسه ريش مقوسة بمحور افقي لاستغلال الطا قة فى رفع
كميه الماء المطلوبة.

Acknowledgement

Here I thank my supervisor Prof. William Ibrahim Asaad for his guidances, comments and suggestions throughout this research. In searching to carry out this work, a lot of help was offered to me. For this I thank the Institute of the Energy Research for helping and providing most of books and documents and information needed.

Finally I would like to thank Sudan University of Science and Technology which gave me this chance to carry out the

study and to all the staff who were always willing to help to locate resource material through our M.Sc. program.

Contents

i	abstract	ii
ii	Acknowledgments	iii
iii	Contents	iv
iv	Symbols	vii
1	Chapter One:- Introduction	1
2	Chapter Two:-Theoretical Approach	4
2.1.	Energy from wind	5
2.1.2	Dynamic Pressure and Dynamic Force exerted by wind	5
2.1.3	Distribution of pressure round a surface	6
2.1.4	Lift and Drag forces	7
2.1.5	Angle of incidence	8
2.1.6	Case of moving bodies	9
2.1.7	Extraction of energy from wind	9
2.1.8	Distribution of pressure	10
2.1.9	Thrust on rotor	10
2.1.10	Axial induction factor	11
2.1.11	Power extracted by the rotor	12
2.1.12	Effect of resisting torque and tangential induction factor	13
2.1.13	Driving force	14
2.1.14	Power ,torque and speed selection	15
2.2	Rotor calculation	19
2.2.1	Blade radius	20
2.2.2	Tip speed ratio	21
2.2.3	The type of blade	22
2.2.4	Torque produced	23
2.3	geometric and dynamic similarity	24
2.4	Forces and stresses on the rotor	26
2.4.1	Rotor Stresses	26
2.4.2	Forces and moments on the rotor	26
2.4.3	Stresses in the rotor spoke at the hub	30
2.4.4	Stresses in the tube which support the blade	31
2.5.	Tower	34
2.5.1	Forces on the tower	34

2.5.2	Effects of the above forces on the vertical legs and Blocks of the Tower	38
2.5.3	Stresses in the tower vertical legs	39
2.5.3.1	Stresses due to compression forces	39
2.5.3.2	Stresses due to the tensile forces	40
2.5.4	Foundation blocks	40
2.5.4.1	Foundation weight	40
2.5.4.2	Bearing pressure	41
3	Chapter Three: Estimation of the Wind Turbine load	43
3.1.1	Pump loads	44
3.1.2	Pump size	45
3.1.3	Inertia head	47
3.1.4	Indicator diagram	48
3.1.5	Air vessel	49
3.2	Pump proportions	50
3.2.1	Two alternative arrangements are possible	51
4	Chapter Four: Rotor proportions	53
4.1	Rotor blade	54
4.2	Selection of tip speed ratio	54
4.3	Angular speed of the rotor	54
4.4	Selection of the type of blade	54
4.5	Chord width calculation	55
4.6	Span length	57
4.7	Setting angle	58
4.8	Power produced by the blade	58
4.9	Number of blades	60
5.1	Chapter Five:-Conclusion and Recommendations	63
6.1	Reference	65

SYMBOLS

		Units
A	Rotor swept area	m^2
A_1	Area on the upstream side of the rotor	m^2
A_2	Area on the downstream side of the rotor	m^2
a	Axial induction factor	
d	Tangential induction factor	
B	Number of blades	
D	Drag force	N
D_p	Pump piston diameter	m
d_d	Diameter of the delivery pipe	m
d_p	Diameter of the pump rod	m
C	Chord width	m
C_D	Drag coefficient	

C_L	Lift coefficient	
C_P	Power coefficient	
C_T	Torque coefficient	
L	Pump stroke	m
L_d	Length of the delivery pipe	m
L_s	Span length	m
F_a	Axial force	N
F_d	Driving force	N
f	Friction factor	
P_a	Atmospheric pressure	N/m^2
P_x	Upstream pressure	N/m^2
P_y	downstream pressure	N/m^2
P_b	blade power	watt
V	Wind speed	m/sec
V_1	Upstream wind speed	m/sec
V_2	Downstream wind speed	m/sec
V_r	Relative speed	m/sec
U	Speed of the rotor	m/sec
T_b	Torque on the blade	Nm

GREEK SYMBOLS

α	Angle of attack	degree
b	Blade setting angle	degree
f	Angle between the relative velocity and the Rotor speed	degree
λ	Tip speed ratio	
λ_r	Local tip speed ratio	
ρ	Air density	kg/m^3
ρ_s	Steel mass density	kg/m^3
ω	Angular speed of the rotor	rad/sec
Ω	Yaw angular speed	rad/sec

REFERENCES

- 1) Eisa. Eltyab Idris. "A design study for wind pump system for use in Sudan" , University of Reading , 1980
- 2) CABLE, Ex.lysen., "Introduction to wind energy", Endhaven ,1983
- 3) Yahya,S M , "Turbine ,Compressor and Fan", New Delhi,1983
- 4) CWD,"Design report 1500 windmill". Netherlands. (1983)
- 5) Sharif, Mohamed .," The year of water", Swiss info ,Geneva ,Switzerland January 2003
- 6) Teferi, T."Wind energy harnessing – theory and the Ethiopian experience ", Journal of the ESME,Voll,No2 October 1999
- 7) Jain.A.K."fluid mechanics ", Delhi, Sep. 1999