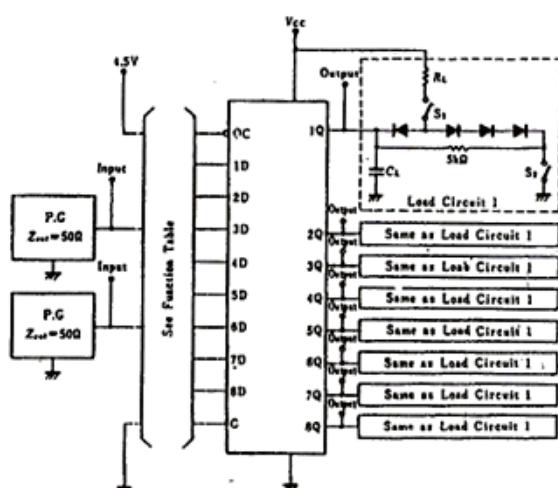


# HD74LS373

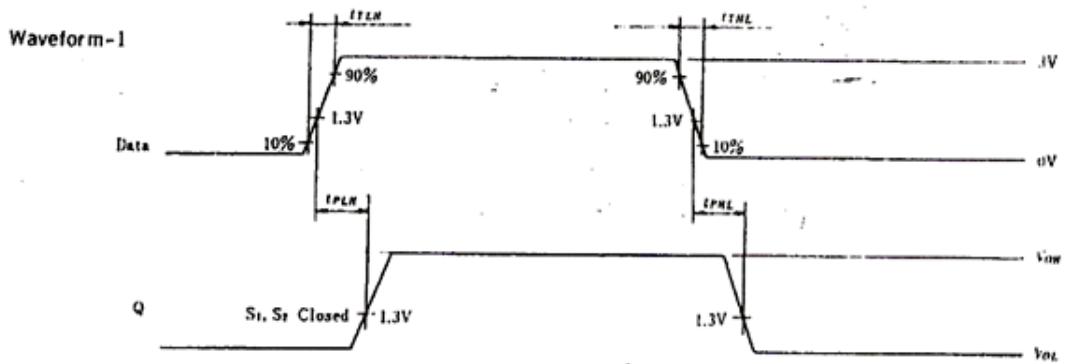
## ■ ELECTRICAL CHARACTERISTICS ( $T_a = -20 \sim +75^\circ C$ )

| Item                         | Symbol    | Test Conditions                                                      | min                                | typ*   | max        | Unit    |
|------------------------------|-----------|----------------------------------------------------------------------|------------------------------------|--------|------------|---------|
| Input voltage                | $V_{IH}$  |                                                                      | 2.0                                | —      | —          | V       |
|                              | $V_{IL}$  | Data inputs<br>$G_i$ , Output control inputs                         | —                                  | —      | 0.7        | V       |
| Output voltage               | $V_{OH}$  | $V_{CC} = 4.75V, V_{IH} = 2V, V_{IL} = V_{IL\ min}, I_{OL} = -2.6mA$ | 2.4                                | —      | —          | V       |
|                              | $V_{OL}$  | $V_{CC} = 4.75V, V_{IH} = 2V, V_{IL} = V_{IL\ max}$                  | $I_{OL} = 12mA$<br>$I_{OL} = 24mA$ | —<br>— | 0.4<br>0.5 | V       |
| Off-state output current     | $I_{OZH}$ | $V_{CC} = 5.25V, V_{IH} = 2V$                                        | $V_o = 2.7V$                       | —      | 20         | $\mu A$ |
|                              | $I_{OZL}$ |                                                                      | $V_o = 0.4V$                       | —      | -20        |         |
| Input current                | $I_{IH}$  | $V_{CC} = 5.25V, V_I = 2.7V$                                         | —                                  | —      | 20         | $\mu A$ |
|                              | $I_{IL}$  | $V_{CC} = 5.25V, V_I = 0.4V$                                         | —                                  | —      | -0.4       | $mA$    |
| Short-circuit output current | $I_{OS}$  | $V_{CC} = 5.25V$                                                     | —                                  | —      | 0.1        | $mA$    |
|                              | $I_{SC}$  | $V_{CC} = 5.25V, V_I = 4.5V$ (Output control)                        | -30                                | —      | -130       | $mA$    |
| Supply current               | $I_{CC}$  |                                                                      | —                                  | 24     | 40         | $mA$    |
| Input clamp voltage          | $V_{IX}$  | $V_{CC} = 4.75V, I_{IH} = -18mA$                                     | —                                  | —      | -1.5       | V       |

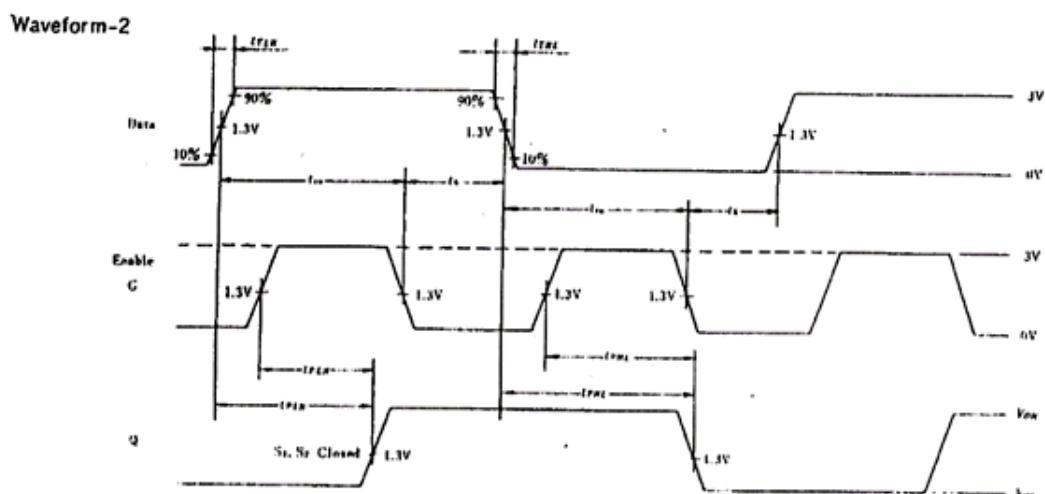

\*  $V_{CC}=5V, T_a=25^\circ C$

## ■ SWITCHING CHARACTERISTICS ( $V_{CC}=5V, T_a=25^\circ C$ )

| Item                   | Symbol    | Input | Output | Test Conditions                   | min | typ | max | Unit |
|------------------------|-----------|-------|--------|-----------------------------------|-----|-----|-----|------|
| Propagation delay time | $t_{PLH}$ | D     | Q      | $C_L = 45pF$<br>$R_L = 667\Omega$ | —   | 12  | 18  | ns   |
|                        | $t_{PLL}$ |       |        |                                   | —   | 12  | 18  |      |
|                        | $t_{PHL}$ | G     | Q      |                                   | —   | 20  | 30  |      |
|                        | $t_{PHL}$ |       |        |                                   | —   | 18  | 30  |      |
| Output enable time     | $t_{ZH}$  | OC    | Q      | $C_L = 5pF$<br>$R_L = 667\Omega$  | —   | 15  | 28  | ns   |
|                        | $t_{ZL}$  | OC    | Q      |                                   | —   | 25  | 36  |      |
| Output disable time    | $t_{ZH}$  | OC    | Q      | $C_L = 5pF$<br>$R_L = 667\Omega$  | —   | 12  | 20  | ns   |
|                        | $t_{ZL}$  | OC    | Q      |                                   | —   | 15  | 25  |      |

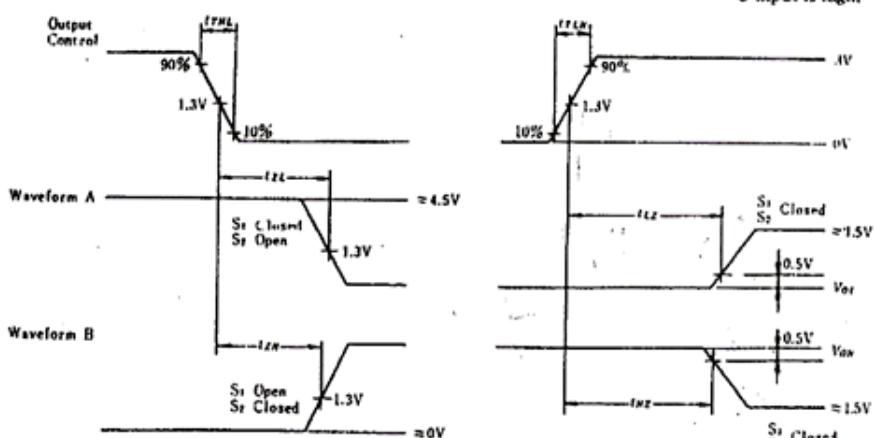

## ■ TESTING METHOD

### Test Circuit



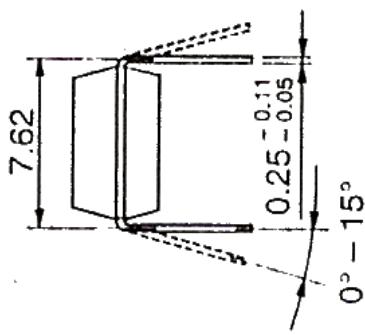
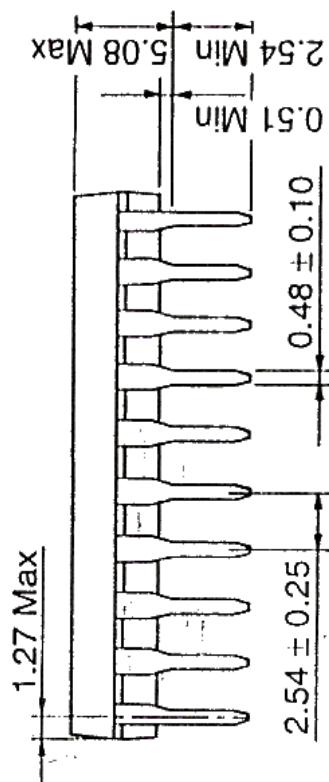
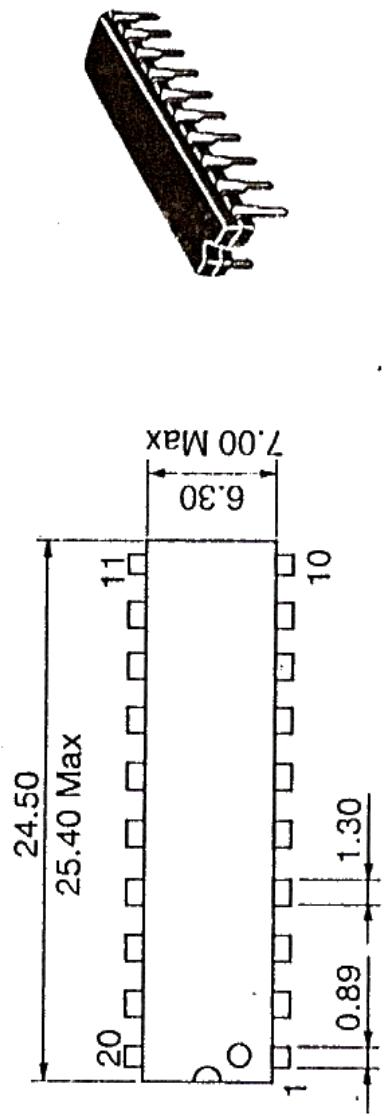

Notes: 1.  $C_L$  includes probe jig capacitance.  
2. All diodes are 1S2074 (D).

**HD74LS373**



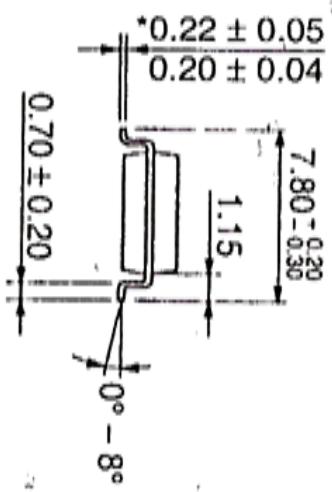
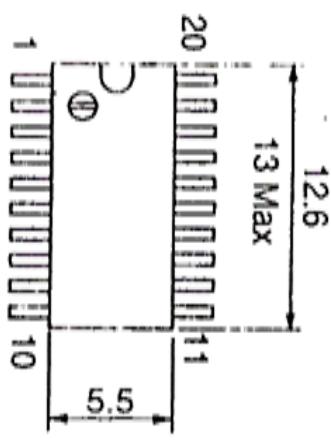

Notes: Input pulse:  $t_{THH} \leq 15\text{ns}$ ,  $t_{TTL} \leq 6\text{ns}$ , PRR = 1MHz, duty cycle 50%






Note: Enable input pulse:  $t_{TH} \leq 15\text{ns}$ ,  
 $t_{TL} \leq 6\text{ns}$ ,  
 $PRR = 1\text{MHz}$

Data input pulse:  $t_{TH} \leq 15\text{ns}$ ,  
 $t_{TH} \leq 6\text{ns}$ ,  
 $PRR = 1\text{MHz}$ ,  
 $G$  input is high.

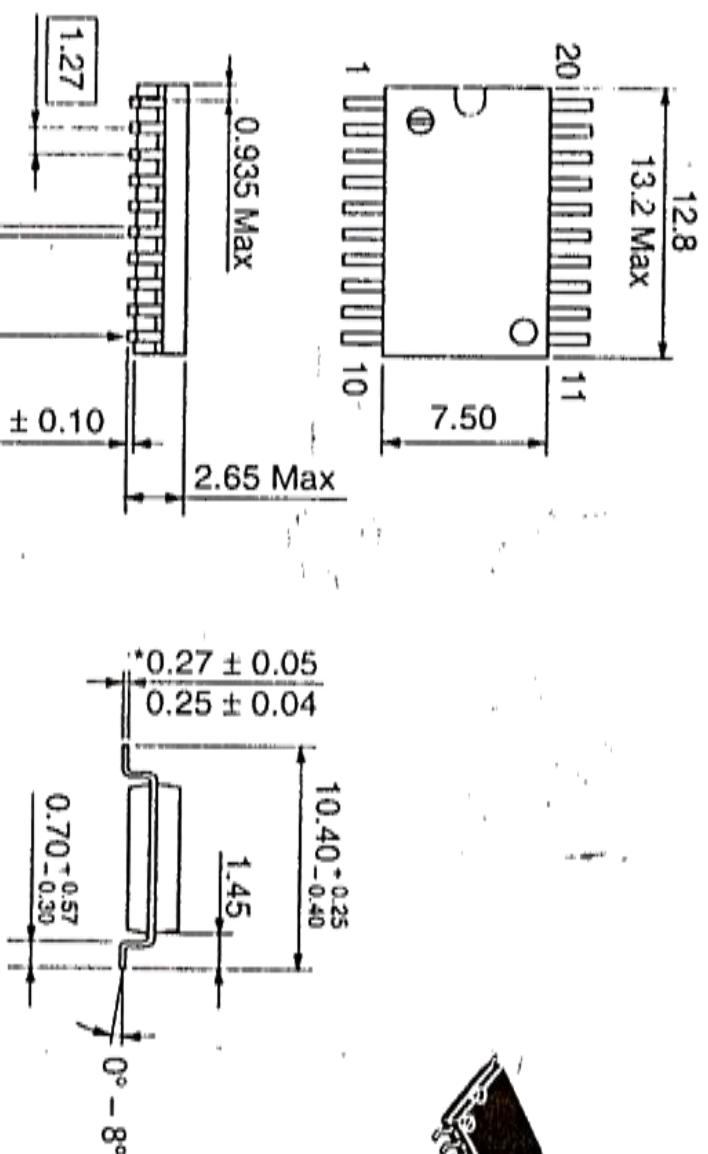




Notes: 1. Input pulse:  $t_{TTL} \leq 15\text{ns}$ ,  $t_{THL} \leq 6\text{ns}$ ,  $PRR = 1\text{MHz}$ , duty cycle 50%  
 2. Waveform A is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform B is for an output with internal conditions such that the output is high except when disabled by the output control.

Unit: mm



|                          |          |
|--------------------------|----------|
| Hitachi Code             | DP-20N   |
| JEDEC                    | -        |
| EIAJ                     | Conforms |
| Weight (reference value) | 1.26 g   |


Unit: mm



|                          |          |
|--------------------------|----------|
| Hitachi Code             | FP-20DA  |
| JEDEC                    | —        |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.31 g   |

\*Dimension including the plating thickness  
Base material dimension

Unit: mm



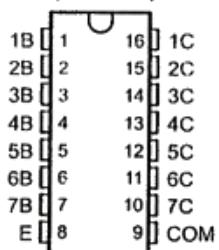
|                          |          |
|--------------------------|----------|
| Hitachi Code             | FP-20DB  |
| JEDEC                    | Conforms |
| EIAJ                     | —        |
| Weight (reference value) | 0.52 g   |

\*Dimension including the plating thickness

Base material dimension

# ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A

## HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY


The ULN2001A is obsolete  
and is no longer supplied.

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

- 500-mA-Rated Collector Current  
(Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

ULN2001A . . . D OR N PACKAGE  
ULN2002A . . . N PACKAGE  
ULN2003A . . . D, N, NS, OR PW PACKAGE  
ULN2004A . . . D, N, OR NS PACKAGE  
ULQ2003A, ULQ2004A . . . D OR N PACKAGE

(TOP VIEW)



### description/ordering information

The ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, and ULQ2004A are high-voltage, high-current Darlington transistor arrays. Each consists of seven npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions of the ULN2003A and ULN2004A, see the SN75468 and SN75469, respectively.

### ORDERING INFORMATION

| TA            | PACKAGE†   |              | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|---------------|------------|--------------|-----------------------|------------------|
| -20°C to 70°C | PDIP (N)   | Tube of 25   | ULN2002AN             | ULN2002AN        |
|               |            |              | ULN2003AN             | ULN2003AN        |
|               |            |              | ULN2004AN             | ULN2004AN        |
|               |            | Tube of 40   | ULN2003AD             | ULN2003A         |
|               | SOIC (D)   | Reel of 2500 | ULN2003ADR            | ULN2003A         |
|               |            | Tube of 40   | ULN2004AD             | ULN2004A         |
|               |            | Reel of 2500 | ULN2004ADR            | ULN2004A         |
|               | SOP (NS)   | Reel of 2000 | ULN2003ANSR           | ULN2003A         |
|               |            |              | ULN2004ANSR           | ULN2004A         |
|               | TSSOP (PW) | Tube of 90   | ULN2003APW            | ULN2003A         |
|               |            | Reel of 2000 | ULN2003APWR           | ULN2003A         |
| -40°C to 85°C | PDIP (N)   | Tube of 25   | ULQ2003AN             | ULQ2003A         |
|               |            |              | ULQ2004AN             | ULQ2004AN        |
|               | SOIC (D)   | Tube of 40   | ULQ2003AD             | ULQ2003A         |
|               |            | Reel of 2500 | ULQ2003ADR            | ULQ2003A         |
|               |            | Tube of 40   | ULQ2004AD             | ULQ2004A         |
|               |            | Reel of 2500 | ULQ2004ADR            | ULQ2004A         |

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at [www.ti.com/sc/package](http://www.ti.com/sc/package).



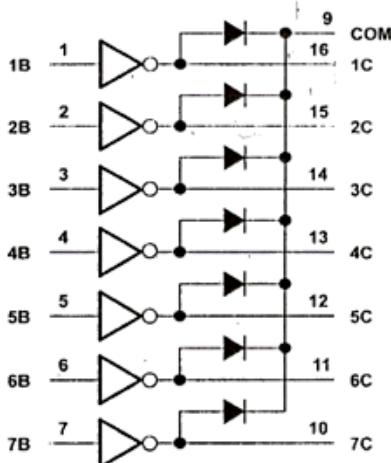
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.

 **TEXAS  
INSTRUMENTS**  
POST OFFICE BOX 655301 • DALLAS, TEXAS 75265

Copyright © 2004, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

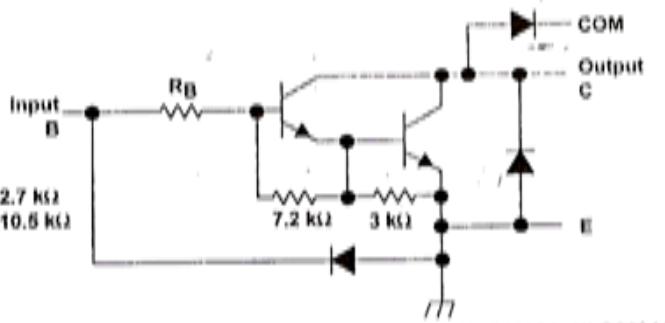
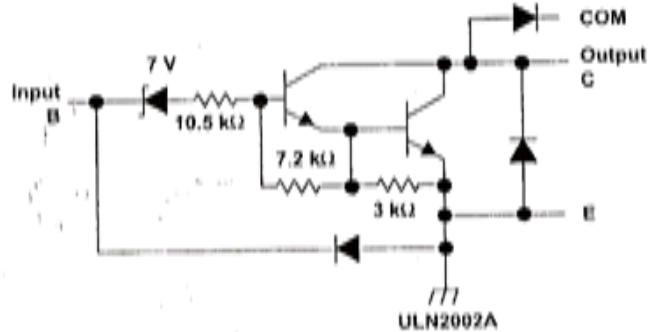
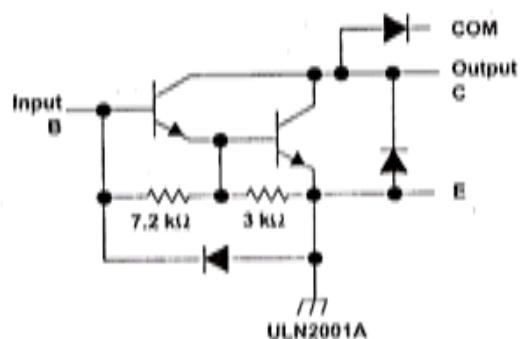

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

**The ULN2001A is obsolete and is no longer supplied.**

**description/ordering information (continued)**

The ULN2001A is a general-purpose array and can be used with TTL and CMOS technologies. The ULN2002A is designed specifically for use with 14-V to 25-V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULN2003A and ULQ2003A have a 2.7-k $\Omega$  series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. The ULN2004A and ULQ2004A have a 10.5-k $\Omega$  series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULN/ULQ2004A is below that of the ULN/ULQ2003A, and the required voltage is less than that required by the ULN2002A.

## logic diagram


**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

The ULN2001A is obsolete  
and is no longer supplied.

**schematics (each Darlington pair)**



ULN/ULQ2003A:  $R_B = 2.7 \text{ k}\Omega$   
ULN/ULQ2004A:  $R_B = 10.5 \text{ k}\Omega$

All resistor values shown are nominal.

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

The ULN2001A is obsolete  
and is no longer supplied.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)<sup>†</sup>

|                                                                         |                |
|-------------------------------------------------------------------------|----------------|
| Collector-emitter voltage                                               | 50 V           |
| Clamp diode reverse voltage (see Note 1)                                | 50 V           |
| Input voltage, $V_I$ (see Note 1)                                       | 30 V           |
| Peak collector current (see Figures 14 and 15)                          | 500 mA         |
| Output clamp current, $I_{OK}$                                          | 500 mA         |
| Total emitter-terminal current                                          | -2.5 A         |
| Operating free-air temperature range, $T_A$                             | -20°C to 70°C  |
| ULN200xA                                                                | -40°C to 85°C  |
| ULQ200xA                                                                | -40°C to 105°C |
| ULQ200xAT                                                               | -40°C to 105°C |
| Package thermal impedance, $\theta_{JA}$ (see Notes 2 and 3): D package | 73°C/W         |
| N package                                                               | 67°C/W         |
| NS package                                                              | 64°C/W         |
| PW package                                                              | 108°C/W        |
| Package thermal impedance, $\theta_{JC}$ (see Notes 4 and 5): D package | 36°C/W         |
| N package                                                               | 54°C/W         |
| Operating virtual junction temperature, $T_J$                           | 150°C          |
| Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds            | 260°C          |
| Storage temperature range, $T_{STG}$                                    | -65°C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.  
2. Maximum power dissipation is a function of  $T_J$ (max),  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(\max) - T_A)\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability.  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
4. Maximum power dissipation is a function of  $T_J$ (max),  $\theta_{JC}$ , and  $T_C$ . The maximum allowable power dissipation at any allowable case temperature is  $P_D = (T_J(\max) - T_C)\theta_{JC}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability.  
5. The package thermal impedance is calculated in accordance with MIL-STD-883.

**electrical characteristics,  $T_A = 25^\circ\text{C}$  (unless otherwise noted)**

| PARAMETER     | TEST FIGURE                           | TEST CONDITIONS | ULN2001A                                                                           |      |     | ULN2002A |      |     | UNIT          |
|---------------|---------------------------------------|-----------------|------------------------------------------------------------------------------------|------|-----|----------|------|-----|---------------|
|               |                                       |                 | MIN                                                                                | TYP  | MAX | MIN      | TYP  | MAX |               |
| $V_{I(on)}$   | On-state input voltage                | 6               | $V_{CE} = 2\text{ V}$ , $I_C = 300\text{ mA}$                                      |      |     |          |      | 13  | V             |
| $V_{CE(sat)}$ | Collector-emitter saturation voltage  | 5               | $I_I = 250\text{ }\mu\text{A}$ , $I_C = 100\text{ mA}$                             | 0.9  | 1.1 | 0.9      | 1.1  |     | V             |
|               |                                       |                 | $I_I = 350\text{ }\mu\text{A}$ , $I_C = 200\text{ mA}$                             | 1    | 1.3 | 1        | 1.3  |     |               |
|               |                                       |                 | $I_I = 500\text{ }\mu\text{A}$ , $I_C = 350\text{ mA}$                             | 1.2  | 1.6 | 1.2      | 1.6  |     |               |
| $V_F$         | Clamp forward voltage                 | 8               | $I_F = 350\text{ mA}$                                                              | 1.7  | 2   | 1.7      | 2    |     | V             |
| $I_{CEX}$     | Collector cutoff current              | 1               | $V_{CE} = 50\text{ V}$ , $I_I = 0$                                                 | 50   |     | 50       |      |     | $\mu\text{A}$ |
|               |                                       |                 | $V_{CE} = 50\text{ V}$ , $I_I = 0$                                                 | 100  |     | 100      |      |     |               |
|               |                                       |                 | $T_A = 70^\circ\text{C}$ , $V_I = 6\text{ V}$                                      |      |     | 500      |      |     |               |
| $I_{I(off)}$  | Off-state input current               | 3               | $V_{CE} = 50\text{ V}$ , $I_C = 500\text{ }\mu\text{A}$ , $T_A = 70^\circ\text{C}$ | 50   | 65  | 50       | 65   |     | $\mu\text{A}$ |
| $I_I$         | Input current                         | 4               | $V_I = 17\text{ V}$                                                                |      |     | 0.82     | 1.25 |     | mA            |
| $I_R$         | Clamp reverse current                 | 7               | $V_R = 50\text{ V}$ , $T_A = 70^\circ\text{C}$                                     | 100  |     | 100      |      |     | $\mu\text{A}$ |
|               |                                       |                 | $V_R = 50\text{ V}$                                                                | 50   |     | 50       |      |     |               |
| $h_{FE}$      | Static forward-current transfer ratio | 5               | $V_{CE} = 2\text{ V}$ , $I_C = 350\text{ mA}$                                      | 1000 |     |          |      |     |               |
| $C_I$         | Input capacitance                     |                 | $V_I = 0$ , $f = 1\text{ MHz}$                                                     | 15   | 25  | 15       | 25   |     | pF            |

# ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A

The ULN2001A is obsolete  
and is no longer supplied.

HIGH-VOLTAGE HIGH-CURRENT  
DARLINGTON TRANSISTOR ARRAY

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

## electrical characteristics, $T_A = 25^\circ\text{C}$ (unless otherwise noted) (continued)

| PARAMETER            | TEST FIGURE | TEST CONDITIONS                                     | ULN2003A                                            |      |      | ULN2004A |      |      | UNIT          |
|----------------------|-------------|-----------------------------------------------------|-----------------------------------------------------|------|------|----------|------|------|---------------|
|                      |             |                                                     | MIN                                                 | TYP  | MAX  | MIN      | TYP  | MAX  |               |
| $V_I(\text{on})$     | 6           | $V_{CE} = 2\text{ V}$                               | $I_C = 125\text{ mA}$                               |      |      |          |      | 5    | V             |
|                      |             |                                                     | $I_C = 200\text{ mA}$                               |      | 2.4  |          |      | 6    |               |
|                      |             |                                                     | $I_C = 250\text{ mA}$                               |      | 2.7  |          |      |      |               |
|                      |             |                                                     | $I_C = 275\text{ mA}$                               |      |      |          |      | 7    |               |
|                      |             |                                                     | $I_C = 300\text{ mA}$                               |      | 3    |          |      |      |               |
|                      |             |                                                     | $I_C = 350\text{ mA}$                               |      |      |          |      | 8    |               |
| $V_{CE(\text{sat})}$ | 5           | $I_I = 250\text{ }\mu\text{A}, I_C = 100\text{ mA}$ | $I_I = 250\text{ }\mu\text{A}, I_C = 100\text{ mA}$ | 0.9  | 1.1  | 0.9      | 1.1  |      | V             |
|                      |             |                                                     | $I_I = 350\text{ }\mu\text{A}, I_C = 200\text{ mA}$ | 1    | 1.3  | 1        | 1.3  |      |               |
|                      |             |                                                     | $I_I = 500\text{ }\mu\text{A}, I_C = 350\text{ mA}$ | 1.2  | 1.6  | 1.2      | 1.6  |      |               |
| $I_{CEX}$            | 1           | $V_{CE} = 50\text{ V}, I_I = 0$                     |                                                     |      | 50   |          |      | 50   | $\mu\text{A}$ |
|                      |             |                                                     |                                                     |      |      | 100      |      | 100  |               |
| $I_F$                | 8           | $V_I = 1\text{ V}$                                  |                                                     |      |      |          |      | 500  | V             |
|                      |             |                                                     |                                                     |      |      |          |      |      |               |
| $I_I(\text{off})$    | 3           | $V_{CE} = 50\text{ V}, T_A = 70^\circ\text{C}$      | $I_C = 500\text{ }\mu\text{A}$                      | 50   | 65   | 50       | 65   |      | $\mu\text{A}$ |
| $I_I$                | 4           | $V_I = 3.85\text{ V}$                               |                                                     | 0.93 | 1.35 |          |      |      | mA            |
|                      |             | $V_I = 5\text{ V}$                                  |                                                     |      |      |          | 0.35 | 0.5  |               |
|                      |             | $V_I = 12\text{ V}$                                 |                                                     |      |      |          | 1    | 1.45 |               |
| $I_R$                | 7           | $V_R = 50\text{ V}$                                 |                                                     |      | 50   |          |      | 50   | $\mu\text{A}$ |
|                      |             | $V_R = 50\text{ V}, T_A = 70^\circ\text{C}$         |                                                     |      |      | 100      |      | 100  |               |
| $C_I$                |             | $V_I = 0, f = 1\text{ MHz}$                         |                                                     | 15   | 25   | 15       | 25   |      | $\text{pF}$   |

 **TEXAS  
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**

The ULN2001A is obsolete  
and is no longer supplied.

**HIGH-VOLTAGE HIGH-CURRENT  
DARLINGTON TRANSISTOR ARRAY**

SLR5027G - DECEMBER 1976 - REVISED JUNE 2004

**PARAMETER MEASUREMENT INFORMATION**

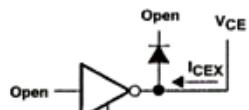



Figure 1.  $I_{CEx}$  Test Circuit

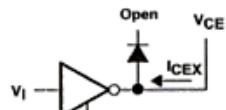



Figure 2.  $I_{CEx}$  Test Circuit

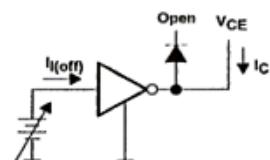



Figure 3.  $I_i(\text{off})$  Test Circuit

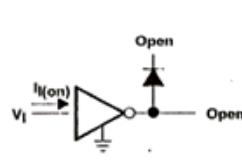
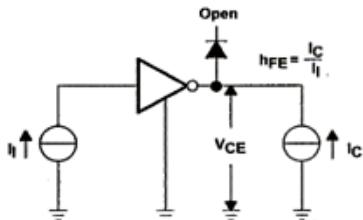




Figure 4.  $I_i$  Test Circuit



NOTE:  $I_i$  is fixed for measuring  $V_{CE}(\text{sat})$ , variable for measuring  $h_{FE}$ .

Figure 5.  $h_{FE}$ ,  $V_{CE}(\text{sat})$  Test Circuit

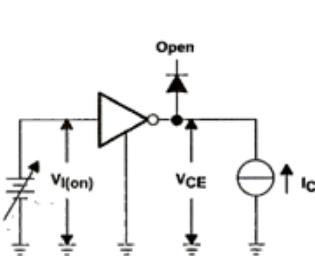



Figure 6.  $V_{l(\text{on})}$  Test Circuit

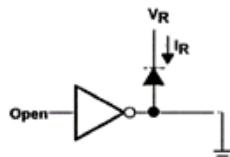



Figure 7.  $I_R$  Test Circuit

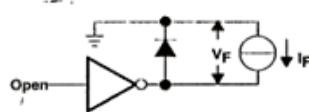



Figure 8.  $V_F$  Test Circuit

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

The ULN2001A is obsolete  
and is no longer supplied.

**electrical characteristics over recommended operating conditions (unless otherwise noted)**

| PARAMETER                                             | TEST FIGURE | TEST CONDITIONS                                      | ULQ2003A              |      |      | ULQ2004A |     |               | UNIT          |
|-------------------------------------------------------|-------------|------------------------------------------------------|-----------------------|------|------|----------|-----|---------------|---------------|
|                                                       |             |                                                      | MIN                   | TYP  | MAX  | MIN      | TYP | MAX           |               |
| $V_{I(on)}$<br>On-state input voltage                 | 6           | $V_{CE} = 2\text{ V}$                                | $I_C = 125\text{ mA}$ |      |      |          |     | 5             | V             |
|                                                       |             |                                                      | $I_C = 200\text{ mA}$ |      | 2.7  |          |     | 6             |               |
|                                                       |             |                                                      | $I_C = 250\text{ mA}$ |      | 2.9  |          |     |               |               |
|                                                       |             |                                                      | $I_C = 275\text{ mA}$ |      |      |          |     | 7             |               |
|                                                       |             |                                                      | $I_C = 300\text{ mA}$ |      | 3    |          |     |               |               |
|                                                       |             |                                                      | $I_C = 350\text{ mA}$ |      |      |          |     | 8             |               |
| $V_{CE(sat)}$<br>Collector-emitter saturation voltage | 5           | $I_I = 250\text{ }\mu\text{A}, I_C = 100\text{ mA}$  |                       | 0.9  | 1.2  | 0.9      | 1.1 |               | V             |
|                                                       |             | $I_I = 350\text{ }\mu\text{A}, I_C = 200\text{ mA}$  |                       | 1    | 1.4  | 1        | 1.3 |               |               |
|                                                       |             | $I_I = 500\text{ }\mu\text{A}, I_C = 350\text{ mA}$  |                       | 1.2  | 1.7  | 1.2      | 1.6 |               |               |
| $I_{CEX}$<br>Collector cutoff current                 | 1           | $V_{CE} = 50\text{ V}, I_I = 0$                      |                       | 100  |      |          | 50  |               | $\mu\text{A}$ |
|                                                       | 2           | $V_{CE} = 50\text{ V}$                               | $I_I = 0$             |      |      |          | 100 |               |               |
| $V_F$<br>Clamp forward voltage                        | 8           | $I_F = 350\text{ mA}$                                |                       | 1.7  | 2.3  | 1.7      | 2   | V             |               |
|                                                       | 3           | $V_{CE} = 50\text{ V}, I_C = 500\text{ }\mu\text{A}$ |                       | 65   |      | 50       | 65  | $\mu\text{A}$ |               |
| $I_I$<br>Input current                                | 4           | $V_I = 3.85\text{ V}$                                |                       | 0.93 | 1.35 |          |     | $\text{mA}$   |               |
|                                                       |             | $V_I = 5\text{ V}$                                   |                       |      |      | 0.35     | 0.5 |               |               |
| $I_R$<br>Clamp reverse current                        | 7           | $V_R = 50\text{ V}, T_A = 25^\circ\text{C}$          |                       | 100  |      |          | 50  | $\mu\text{A}$ |               |
|                                                       |             | $V_R = 50\text{ V}$                                  |                       | 100  |      |          | 100 |               |               |
| $C_I$<br>Input capacitance                            |             | $V_I = 0, f = 1\text{ MHz}$                          |                       | 15   | 25   | 15       | 25  | $\text{pF}$   |               |

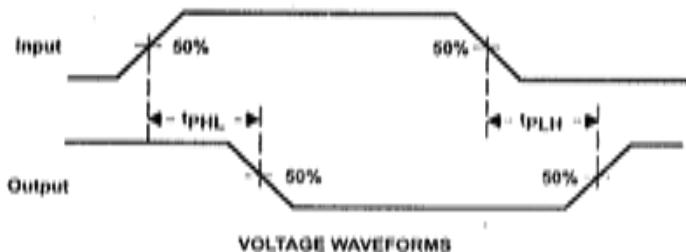
**switching characteristics,  $T_A = 25^\circ\text{C}$**

| PARAMETER                                                      | TEST CONDITIONS                                            | ULN2001A, ULN2002A, ULN2003A, ULN2004A |      |     | UNIT          |
|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|------|-----|---------------|
|                                                                |                                                            | MIN                                    | TYP  | MAX |               |
| $t_{PLH}$<br>Propagation delay time, low- to high-level output | See Figure 9                                               |                                        | 0.25 | 1   | $\mu\text{s}$ |
| $t_{PHL}$<br>Propagation delay time, high- to low-level output | See Figure 9                                               |                                        | 0.25 | 1   | $\mu\text{s}$ |
| $V_{OH}$<br>High-level output voltage after switching          | $V_S = 50\text{ V}, I_O = 300\text{ mA},$<br>See Figure 10 | $V_S = 20$                             |      |     | $\text{mV}$   |

**switching characteristics over recommended operating conditions (unless otherwise noted)**

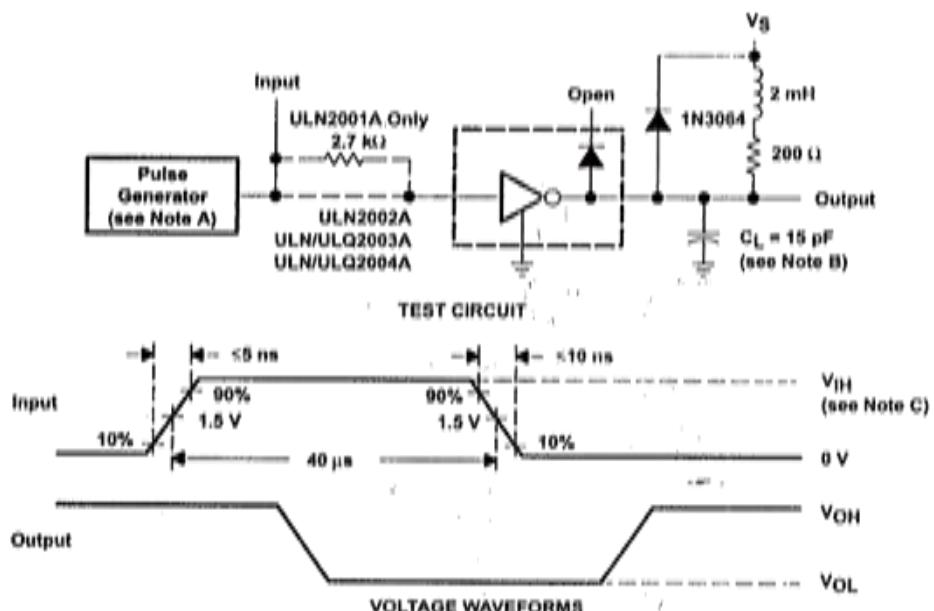
| PARAMETER                                                      | TEST CONDITIONS                                            | ULQ2003A, ULQ2004A |     |     | UNIT          |
|----------------------------------------------------------------|------------------------------------------------------------|--------------------|-----|-----|---------------|
|                                                                |                                                            | MIN                | TYP | MAX |               |
| $t_{PLH}$<br>Propagation delay time, low- to high-level output | See Figure 9                                               |                    | 1   | 10  | $\mu\text{s}$ |
| $t_{PHL}$<br>Propagation delay time, high- to low-level output | See Figure 9                                               |                    | 1   | 10  | $\mu\text{s}$ |
| $V_{OH}$<br>High-level output voltage after switching          | $V_S = 50\text{ V}, I_O = 300\text{ mA},$<br>See Figure 10 | $V_S = 500$        |     |     | $\text{mV}$   |

 **TEXAS  
INSTRUMENTS**


POST OFFICE BOX 655303 • DALLAS, TEXAS 75205

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

SLR8027G - DECEMBER 1976 - REVISED JUNE 2004


The ULN2001A is obsolete  
 and is no longer supplied.

**PARAMETER MEASUREMENT INFORMATION**



VOLTAGE WAVEFORMS

Figure 9. Propagation Delay-Time Waveforms



NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz,  $Z_0 = 50 \Omega$ .  
 B.  $C_L$  includes probe and jig capacitance.  
 C. For testing the ULN2001A, the ULN2003A, and the ULQ2003A,  $V_{DH} = 3$  V; for the ULN2002A,  $V_{DH} = 13$  V; for the ULN2004A and the ULQ2004A,  $V_{DH} = 8$  V.

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**

The ULN2001A is obsolete  
and is no longer supplied.

**HIGH-VOLTAGE HIGH-CURRENT  
DARLINGTON TRANSISTOR ARRAY**

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

**TYPICAL CHARACTERISTICS**

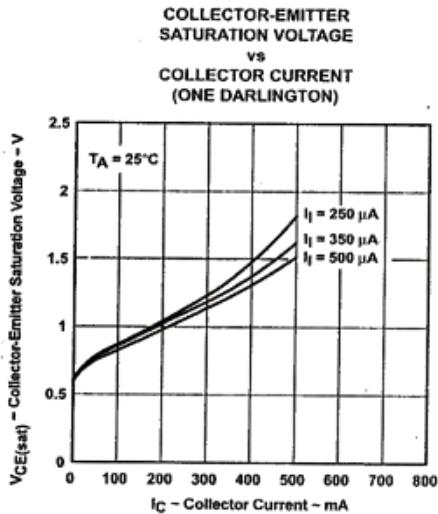



Figure 11

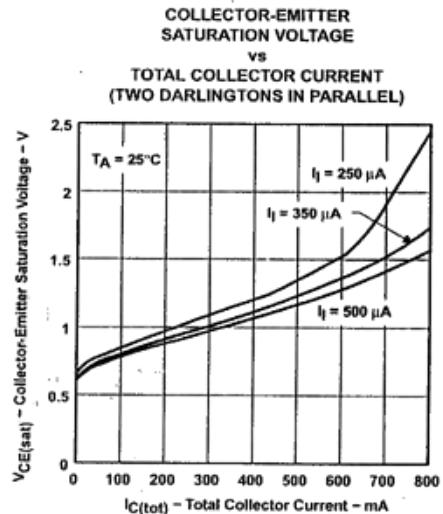



Figure 12

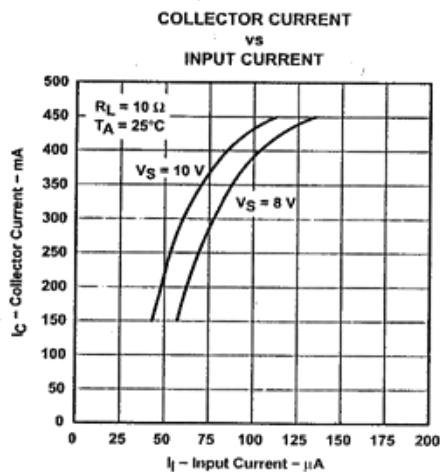



Figure 13

  
**TEXAS  
INSTRUMENTS**  
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A**  
**HIGH-VOLTAGE HIGH-CURRENT**  
**DARLINGTON TRANSISTOR ARRAY**

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

The ULN2001A is obsolete  
and is no longer supplied.

**THERMAL INFORMATION**

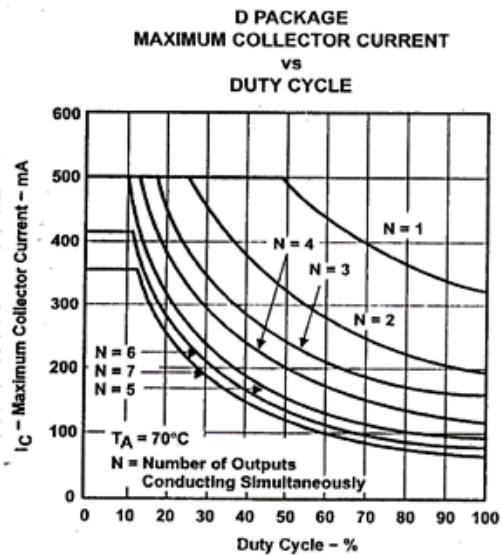



Figure 14

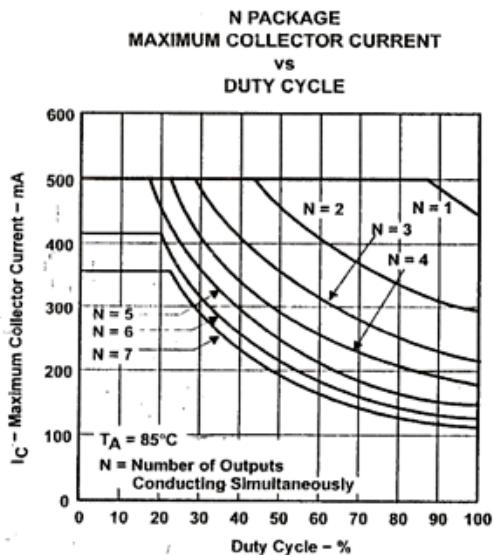



Figure 15

## ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A

The ULN2001A is obsolete  
and is no longer supplied.

## HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

SLRS027G - DECEMBER 1976 - REVISED JUNE 2004

### APPLICATION INFORMATION

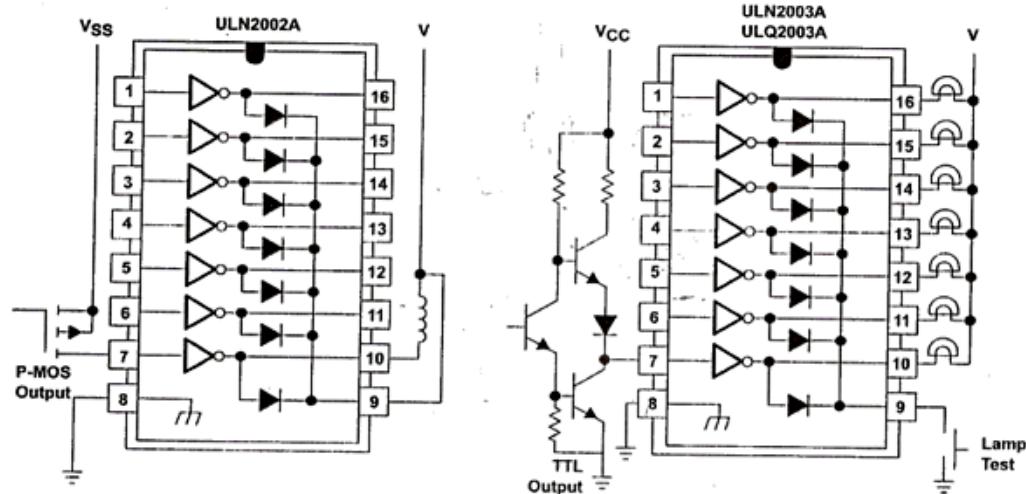



Figure 16. P-MOS to Load

Figure 17. TTL to Load

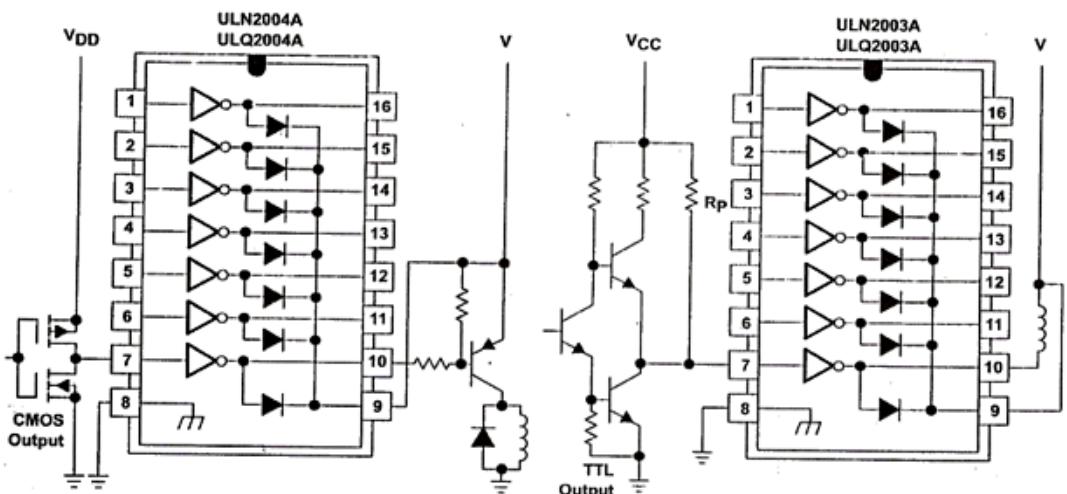



Figure 18. Buffer for Higher Current Loads

Figure 19. Use of Pullup Resistors  
to Increase Drive Current

 **TEXAS  
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

This datasheet has been download from:

[www.datasheetcatalog.com](http://www.datasheetcatalog.com)

datasheets for electronics components.