

Dedication

*I dedicated this work to my wife, Faiha,
for her steadfast support, understanding,
and patience*

Acknowledgment

First, praise is to Alla, the first cherisher substainer of the world, Acknowledgments *Sea ports Corporation, Sudan University of Science & Technology, Communication Engineering teachers*, I'm indebted to all of them because of their support and device.

They were all patient and generous in helping. Special acknowledgment to ***Dr. ABD AL RASOL JABAR ALZUBAIDY.***

Who made the completion of this work possible in the first place by this advice and by the generous aid that he has offered to me. He has also been kind enough to follow me preparing the manuscript and to make constructive.

Abstract

Recently, digital data transmission has witnessed considerable importance. This is a result of huge increase in applications where data, voice, video, and multimedia are digitally processed in baseband modulation, however, the pulse wave form (mostly in PCM) is modified in such away as to suite transmission medium and thus often called digital line codes.

A general form of digital line codes are (NRZ-I, NRZ- L, NRZ-S) where explained in this research by using computer board system with electronic circuit design.

Finally describes the program software using C language and flow chart.

المستخلص

هذا البحث يقدم شرح مع تصميم دائرة الكترونية رقمية تفعل بواسطة جهاز الحاسوب باستخدام برنامج كتب بلغة سي لغرض إتمام عملية التشفير الرقمي.

الشفير الرقمي أنواع متعددة ولكل نوع يتم تفعيله برمجياً من خلال الحاسوب وتفعيل الدائرة الالكترونية الرقمية المتصلة بجهاز الحاسوب التي من خلالها يتم معرفة خصائص ومميزات كل نوع من أنواع التشفير الرقمي. مع استعراض بعض من الدوائر الالكترونية الرقمية التي عن طريقها تتم عملية التشفير الرقمي.

يمكن الاستفادة من هذا البحث كوسيلة لإيضاح للشفير الرقمي وطرقه المتنوعة ورؤيه نتيجة كل عملية من عمليات التشفير الرقمي.

Table of Contents

	Topes	Page No
Dedication		I
Acknowledgment		II
Abstract		III
المستخلص		IV
Table of contents		V
List of tables		VI
List of figures		IX
Abbreviation		X
Chapter One : Introduction		
1.1	Introduction	1
1.2	Problems statement	2
1.3	Objective	4
1.4	Mythology	4
	1.4.1PCM	4
	1.4.2 Line Encoding	5
	1.4.3 Analog-to-Digital	5
	1.4.4 LPF and Sampling	6
	1.4.5 Quantization	7
	1.4.6 Binary Representation	8
1.5	Research out line	9
Chapter Two : Type of encoding		
2.1	Digital data, digital signal	10
2.2	Lists of five evaluation factors	11
	2.2.1 signal spectrum	11
	2.2.2 clocking	11

2.2.3	Error detection	12
2.2.4	Signal interference and noise immunity	12
2.2.5	cost and complexity	12
2.3	Encoding schemes	13
2.3.1	unipolar Encoding or no return zero (NRZ)	15
2.3.2	multilevel binary	18
2.3.3	Bi Phase	19
3.3.3.1	Synchronization	19
3.3.3.2	No dc component	20
3.3.3.3	Error detection	20

Chapter Three : electronic circuit design

3.1	Composition of the circuits	23
3.1.1	function table	25
3.1.2	Block diagram	25
3.1.3	Testing method	26
3.2	ULN 2003 chip	26
3.2.1	Logic digram	28
3.2.2	Electrical characteristics	29
3.3	Step of design	31

Chapter Four : Software code

4.1	Uni polar (NRZ) code	35
4.1.1	Flow chart	35
4.2	NRZ- L code	39
4.2.1	Flow chart	39
4.3	NRZ- I code	43
4.3.1	Flow chart	43

Chapter Five: Result & Discussion	48
Chapter Six: Conclusion & Recommendation	50
6.1 Conclusion	50
6.2 Recommendation	51
Reference	52
Appendix	
Appendix (A) HD 74LS 373 data sheet	
Appendix (B) ULN 2001 A -2002 A - 2003 A data sheet	

List of Tables

Table	Description	Page No
1.1	A simple quantizer	7
1.2	Gray code on our quantizer	9
2.1	Definition of digital signal Encoding formats	13
2.2	Definition of digital signal encoding formats	21
3.1	Function table	25
3.2	Electrical characteristics	29
3.3	Step of connecting form D- 25 connector to chips 74373	31
3.4	Step of connecting from out put of chips 74373 to chip (3&4) ULN 2003	32
3.5	Step of connecting fro chip (3&4) ULN 2003 to three relays	33
3.6	Out put of three relays	33

List of Figures

Figure	Description	Page No
1.1	Converting an analog signal to digital signal	3
1.2	PCM technique	6
2.1	Unipolar line encoding	15
2.2	Parallel running cables	15
2.3	Clock oscillator	16
2.4	No return to a zero voltage level	16
2.5	Digital signal encoding formats	22
3.1	HD 74 LS 373 chip	23
3.2	PIN Arrangement	24
3.3	Block diagram	25
3.4	Test circuit	26
3.5	ULN 2003 chip description	26
3.6	Logic diagram	28
3.7	Electrical characteristics	30
3.8	Electrical characteristics	30
3.9	Electrical characteristics	30
3.10	Electrical characteristics	30
3.11	Circuit of design	34
5.1	The practical circuit shown the result of encoding	49

Abbreviation

AMI	=	alternate mark innovation
Bi- phase- L	=	Bi- Phase Level
Bi- Phase – M	=	Bi – Phase mark
Bi – Phase – S	=	Bi- Phase Space
CMOS	=	Complimentary mataloxide silicon
DBi- Phase – M	=	Differential Bi- phase mark level
DBi- Phase – S	=	Differential Bi – Phase Space
DC	=	Direct current
I/O	=	input/ output
IEEE	=	Institute of Electrical and Electronic Engineers
ISI	=	inter symbol interference
LAN	=	Local Area Net work
LPF	=	Low pas filter
NRZ	=	Non- Return – to – zero
NRZ- I	=	Non – Return – to – zero inverse
NRZ – L	=	Non – Return – to- zero level
NRZ- M	=	Non – Return – to – zero mark
NRZ- S	=	Non – Return – to – zero space
RTZ	=	Return – to – zero
PAM	=	Plus Amplitude modulation
PC	=	Personal computer
PCM	=	plus code modulation
TCP	=	try to correct the data
TS	=	Time period of each sample
TTL	=	Transistor – transistor logic

Sudan University of Science & Technology

**College of graduate Studies
MSc. Of communication Engineering**

Design of a Digital Encoding Circuit

تصميم دائرة التشفير الرقمي

*A thesis submitted in a partial fulfillment of The requirements
for the degree of MSc. In communication Engineering*

Supervisor:

Dr. Abd ALrasol Jabar ALzubaidey

Presented by:

Kamal Fouad Abbas Mohammed

January 2009

Chapter One

Introduction

Chapter Two

Type of encoding

Chapter Three

Electronic circuit design

Chapter Four

Software code

Chapter Five

Result & Discussion

Chapter Six

Conclusion & Recommendation

Appendix