

Contents

Abstract	I
Acknowledgments	II
Nomenclature	VI
List of Figures	VII

Chapter 1

Introduction

1.1 Introduction	1
1.2 Definition and Background	1
1.3 Objectives	3
1.4 Chemical Equilibrium	4
1.5 Methodology for Calculating Chemical Equilibrium Composition	4
1.6 Logic of the Computer Program	5
1.7 Computer Routines	5
1.8 The Program Facilities	6

Chapter 2

Literature Review

2.1 Reaction Models Used in Chemical Calculations	7
2.1.1 Model I: Complete Combustion	
7	
2.1.2 Model II: Minimization of Free Energy	8
2.2 Gas Property Calculations	8
2.3 Chemical Equilibrium Computer Programs	9

Chapter 3

Concepts and Definitions

3.1 Introduction	10
3.2 Zones of Combustion Model	12
3.3 Classification of Flames	12
3.3.1 Laminar and Turbulent Flames	12
3.3.2 Premixed Flames	13
3.3.3 Diffusion Flames	13
3.4 Ideal Gas Model	16
3.5 Composition of Air	16
3.6 Composition of Fuels	17
3.7 Stoichiometry	19
3.8 Flame Temperature	21
3.9 Emissions from IC Engines	21
3.9.1 Nitrogen Oxides	22
3.9.2 Total Organic Compounds (Hydrocarbons)	23
3.9.3 Carbon Monoxide	24
3.9.4 Smoke, Particulate Matter	25
3.9.5 Sulfur Oxides	26

3.9.6 Carbon Dioxide	26
Chapter 4	
Theoretical Backgrounds and Methodology	
4.1 Thermodynamic Basis	27
4.1.1 Specific Heat \bar{c}_p (T)	27
4.1.2 Enthalpy \bar{h} (T)	28
4.1.3 Entropy \bar{s}° (T)	28
4.1.4 Gibbs free energy \bar{g}° (T)	29
4.1.5 Datum States	30
4.2 Thermodynamic Properties for Mixtures	30
4.2.1 Mole and Mass Fractions	30
4.2.2 Mixture Properties	31
4.2.3 Gibbs Free Energy for Mixture	31
4.2.4 Specific Heats for Mixture	32
4.3 Adiabatic Flame Temperature	33
4.4 General Method for Calculating Chemical Equilibrium Composition	36
4.4.1 Combustion Equations	36
4.4.2 Dissociation Reactions	36
4.4.3 Generalized Newton-Raphson Method	38
4.4.4 Solution of the Equations	49
Chapter 5	
Results and Discussions	
5.1 Combustion Products	42
5.1.1 Carbon Dioxide (CO ₂)	42
5.1.2 Carbon Monoxide (CO)	43
5.1.3 Nitric Oxide (NO)	44
5.2 Validation of the results	45
5.2.1 Specific heats variation	45
5.2.2 Equilibrium products composition of Oil gas and Kerosine at 2000K and 1 atm	46
5.2.3 Variation of adiabatic flame temperature	47
5.3 Comparison of the results	48
5.3.1 Comparison of CO ₂ , CO and NO for the present work and Ref [43] results	48
5.3.2 Comparison of CO ₂ and O ₂ for the present work and Ref [33] results	50
5.3.3 Adiabatic flame temperature results	51

Chapter 6

Conclusions and Suggestion

6.1-Conclusions	52
6.2Suggestion	52
References	53

Appendices

Appendix 1	FORTRAN Program
Appendix 2	MATLAB Program
Appendix 3	MATLAB Program Flow chart

Nomenclature

a	Number of Carbon atoms
b	Number of Hydrogen atoms
c	Number of Oxygen atoms
d	Number of Nitrogen atoms
c_p	Mole specific heat at constant pressure
$c_{p,i}$	Specific heat of species i
\bar{h}	Mole specific enthalpy
$\bar{h}_{f,i}^0$	Enthalpy of formation
H_R	Enthalpy of reactants
H_p	Enthalpy of products
K	Equilibrium constant
m_i	Mass of species i
M_i	Molecular weight of species i
n	Total number of moles
n_i	Number of moles of species i
$n_{R,i}$	Number of moles of species i for reactants
$n_{p,i}$	Number of moles of species i for products
P	Total pressure
P_1, P_2	Total pressure at states 1and2
Q	Heat loss
R	Gas constant
\bar{R}	Universal gas constant
\bar{s}	Mole specific entropy
T_a	Adiabatic flame temperature
T_R	Reactants temperature
T_p	Products temperature
T_{ref}	The reference temperature
U_1, U_2	Internal energy at states 1and 2
V_1, V_2	Total volume at states 1and 2
W	Work done
x_i	Mole fraction of species i
z_i	Number of mole of species i
Φ	Equivalence ratio
ε	Molar fuel air ratio

List of Figures

Figure 3.1 Diesel engine	11
Figure 3.2 Spark-ignited engine	11
Figure 3.3 Two zone combustion model	14
Figure 3.4 Single zone combustion mode	14
Figure 3.5 Premixed flames	15
Figure 3.6 Diffusion flame	15
Figure 3.7 Flame propagation (stoichiometric mixture)	20
Figure 3.8 No flame propagation (lean mixture)	20
Figure 4.1 Reactants and products	34
Figure 4.2 Perfectly insulated Cylinder (adiabatic process, $Q = 0$)	34
Figure 5.1 Variation of CO ₂ for fuel (C ₈ H ₁₈)	42
Figure 5.2 Variation of CO for fuel (C ₈ H ₁₈)	43
Figure 5.3 Variation of NO for fuel (C ₈ H ₁₈)	44
Figure 5.4 Variations in specific heat with temperature	45
Figure 5.5 Equilibrium products composition of Oil gas	46
Figure 5.6 Equilibrium products composition of Kerosine	46
Figure 5.7 Variation of adiabatic flame temperature for varying Composition of fuel (C ₈ H ₁₈)	47
Figure 5.8 Present work and Ref [43]results of CO ₂ for fuel (C ₈ H ₁₈)	48
Figure 5.9 Present work and Ref [43] results of CO for fuel (C ₈ H ₁₈)	48
Figure 5.10 Present work and Ref [43] results of NO for fuel (C ₈ H ₁₈)	49
Figure 5.11 Present work and Ref [33] results of CO ₂ and O ₂ for Equilibrium Products composition of Oil gas (C ₁₅ H ₂₈) at 2000K and 1 atm	50
Figure 5.12 Present work and Ref [33] results of CO ₂ and O ₂ for Equilibrium Products composition of Kerosine (C ₁₃ H _{25.5}) at 2000K and 1 atm	50
Figure 5.13 Adiabatic flame temperatures for present work and Ref [1] for varying composition of fuel (C ₈ H ₁₈)	51