

**Dedicated to my mother,
Father,
Family and friends**

Acknowledgments:

This work was carried out in cooperative research and development project. Our deepest gratitude is due to my supervisor, Dr. Abdelrasool Alzubaidi for his guidance, encouragement, and kind helpful which made this work possible.

We are very much great full to my friends and engineer Samir Mohammed Ali for their unlimited help.

And, of course, thanks again to all of my family for every thing do to use.

PLC Based Automation for Industrial Operation

Rania Mohammed Aid Berssi

Master of Computer Engineering, 2008

Department of Computer Engineering

Faculty of Engineering and Technology

Abstract

Automation or numerical control is the use of control system such as computers to control industrial machinery and processes, replacing human operators. In the scope of industrialization, it is a step beyond mechanization. Whereas mechanization provided human operators with machinery to assist them with the physical requirements of work, automation greatly reduces the need for human sensory and mental requirements as well. Processes and systems can also be automated.

Automation plays an increasingly important role in the global economy and in daily experience. Engineers strive to combine automated devices with mathematical and organizational tools to create complex systems for a rapidly expanding range of applications and human activities.

Specialized hardened computers, referred to as programmable logic controller (PLCs), and are frequently used to synchronize the flow of inputs from (physical) sensor and events with the flow of outputs to actuators and events. This leads to precisely controlled actions that permit a tight control of almost any industrial process.

This study in plastic industry, where the PLC an automated industry sequential operations.

المتحكم المنطقي المبرمج (PLC) القائم على التشغيل الالي في العمليات الصناعيه

رانيا محمد عيد برسى

ماجستير هندسه حاسوب, 2008

كلية الهندسه والتكنولوجيا

تجريـد

الاتوماتيكـه أو التـحكم العـدـدي هو إـسـتـعـمال لـنـظـام التـحـكم مـثـلـ الـحـاسـبـاتـ لـلـتـحـكم عـلـىـ الـمـاـكـينـاتـ وـالـعـمـلـيـاتـ الصـنـاعـيـهـ، يـحـلـ مـحـلـ مـشـغـلـيـنـ إـنـسـانـيـنـ. فـيـ مـجـالـ التـصـنـيـعـ، هوـ خـطـوةـ مـاـ بـعـدـ الـمـاـكـينـهـ. بـيـنـمـاـ الـمـاـكـينـهـ زـوـدـتـ مـشـغـلـيـنـ إـنـسـانـيـنـ بـالـمـاـكـينـاتـ لـمـسـاعـدـتـهـمـ بـالـمـتـطـلـبـاتـ الـطـبـيـعـيـهـ لـلـعـلـ، تـخـفـضـ اـتـوـمـاتـيـكـهـ الـحـاجـهـ كـثـيرـاـ لـلـمـتـطـلـبـاتـ الـحـسـيـهـ وـالـعـقـلـيـهـ وـالـإـنـسـانـيـهـ أـيـضـاـ تـلـعـبـ الـأـوـتـوـمـاتـيـكـهـ دـورـ مـهـمـ جـداـ فـيـ الإـقـصـادـ الـعـالـمـيـ وـفـيـ التـجـربـهـ الـيـوـمـيـهـ. يـجـاهـدـ الـمـهـنـدـسـوـنـ لـدـمـجـ الـأـدـوـاتـ الـأـلـيـهـ بـالـأـدـوـاتـ الـرـيـاضـيـهـ وـالـتـنـظـيـمـيـهـ لـخـلـقـ أـنـظـمـهـ مـعـقـدـهـ لـمـدـىـ سـرـعـ التـوـسـعـ مـنـ التـطـبـيـقـاتـ وـالـنـشـاطـاتـ الـبـشـرـيـهـ.

Programmable Logic

في هذا البحث تم استخدام تقنيـهـ التـحـكم الـالـيـ باـسـتـخـادـ جـهاـزـ

Control(PLC) للـتـحـكمـ فـيـ كـلـ الـعـمـلـيـاتـ الصـنـاعـيـهـ الـخـاصـهـ بـصـنـاعـهـ الـبـلـاسـتـيـكـ.

Table of Contents

Dedication.....	i
Acknowledgments.....	ii
Abstract.....	iii
ملخص الدراسة.....	iv
List of Tables.....	ix
List of Abbreviations.....	x
List of Figure.....	xi
Chapter 1 Introduction.....	1
1.1 Background.....	1
1.2 Problem statements.....	2
1.3 Objective of the thesis.....	2
1.4 Methodology.....	2
1.5 Expected Result.....	3
1.6 Research Outlines.....	3
Chapter 2 Programmable Logic Controller.....	5
2.1 Basic PLCs Operation.....	6
2.2 Advantages of PLC.....	6
2.3 Logic 0, Logic 1.....	7
2.4 Component of PLC Unit.....	8
2.4.1 PLC Inputs and Outputs.....	8
2.4.2 CPU.....	11
2.4.3 Memory Unit.....	12

2.4.4 Programmable Device.....	13
2.4.5 Operator Unit.....	13
2.5 Sensors and Actuators.....	14
2.5.1 Sensors.....	14
2.5.2 Sensors Types.....	15
2.5.3 Actuators.....	16
2.6 Siemens PLC.....	16
2.6.1 S7-200 Micro PLC Models.....	17
2.6.2 S7-200 Memory.....	18
2.7 PLC Scan Cycle	19
2.7.1 PLC Operation.....	19

Chapter 3 Programming the PLC.....	21
3.1 Programming.....	21
3.1.1 Ladder Logic.....	22
3.1.2 Ladder Logic Diagram.....	23
3.2 Basic Instructions.....	26
3.3 Statement List.....	27
3.4 Function Block Diagram.....	28
3.5 Timers.....	28
3.5.1 S7-200 Timers.....	29
3.5.2 on-Delay Timer.....	29
3.5.3 off-Delay Timer.....	30
3.5.4 Timer Numbers.....	31
Chapter 4 Plastic Industry.....	32
4.1 Overview.....	32

4.2 Uses and Advantages of Plastics.....	32
4.3 Disadvantages of Plastic.....	33
4.4 Types of Plastic.....	33
4.5 Plastic Processing.....	35
4.5.1 Extrusion Molding.....	35
4.5.2 Injection Molding.....	36
4.5.3 Blow Molding.....	38
4.5.4 Production of Blown Film.....	40
4.5.5 Thermoforming Molding.....	41
4.5.6 Rotational Molding.....	42
4.5.7 Compression Molding.....	43
Chapter 5 Hardware and software design	45
5.1 Hardware Design.....	45
5.1.1 Processes.....	45
5.1.2 Components of Design.....	45
5.2 Software Design.....	47
5.2.1 Circuit Operation.....	47
5.2.2 Program Flow Chart.....	48
5.2.2 Circuit Program.....	49
Chapter 6 Results and Discussions.....	56
6.1 Results.....	56
6.2 Discussion.....	57
Chapter 7 Conclusions and Recommendations.....	58
7.1 Conclusions.....	58
7.2 Recommendations.....	59

References.....	60
Appendix.....	61

List of Tables	Page No.
Table 2.1: Sensors Types	15
Table 2.2: The Types of CPU	18
Table 3.1: Timer Table	31

List of Figures

Page No.

Figure 1.1: Methodology of the PLC an automated industry sequential operation	2
Figure 2.1: PLC Unit connected too many devices	5
Figure 2.2: Logic 0, Logic 1	7
Figure 2.3: Components of PLC Unit	8
Figure 2.4: Elements connected to digital inputs of PLC	9
Figure 2.5: Elements connected to analog inputs of PLC	10
Figure 2.6: Elements connected to digital outputs of PLC	10
Figure 2.7: Elements connected to analog outputs of PLC	11
Figure 2.8: CPU Layout	12
Figure 2.9: Memory Unit	13
Figure 2.10: Pushbutton Layout	14
Figure 2.11: Actuators Layout	16
Figure 2.12: S7-200 Micro PLCs Layout	17
Figure 2.13: PLC Scan	19
Figure 2.14: Scanning Steps	20
Figure 3.1: Basic Requirements for Programming	22
Figure 3.2: A model of Ladder Logic Diagram	23
Figure 3.3: normal opening and normal closing	25
Figure 3.4: A model of Statement List Diagram	27
Figure 3.5: A model of Function Block Diagram	28
Figure 3.6: Timer Types	29
Figure 3.7: ON- Delay timer networks	30
Figure 4.1: Extruder Schematic	36
Figure 4.2: Injection molding Schematic	38
Figure 4.3: Mold Schematic	38
Figure 4.4: Blow molding Schematic	40
Figure 4.5: Blown Film Schematic	41

Figure 4.6: Thermoforming molding Schematic	42
Figure 4.7: Rotational Schematic	43
Figure 4.8: Compression molding Schematic	44
Figure 5.1: Design Components	46
Figure 5.2: A circuit program by ladder logic	49
Figure 5.3: A circuit program by Statement List	52
Figure 5.4: A circuit program by Function Block	54

List of Abbreviation

CPU	Central Processing Unit
EEPROM	Erasable Electronically Programmable Read Only Memory
EPROM	Programmable &Erasable Read Only Memory
FBD	Function Block Diagram
LAD	Ladder Logic Diagram
LD	Load
LDI	Load Inverse
NC	Normal Close
NO	Normal Open
PC	Personal Computer
PLC	Programmable Logic Controller
PT	Preset Time
RAM	Random Access Memory
ROM	Read Only Memory
STL	Statement List
TOF	Off-Delay Timer
TON	on –Delay Timer