

Dedication

Dedicated with deepest love to: My beloved father, mother .
My dearest friends for being my side whenever I need them.

Acknowledgement

Firstly, I would like to thank Allah for his firm hands in guiding me in the course of completing this thesis writing. It is his grace and mercy that I am able to embark on the project.

Also, I want to thank my supervisors; Dr. Abd el rssol Jbar for his professional guidance, wisdom, endurance, advices, motivation and encouragement throughout the project.

Abstract

According to the World Health Organization report of 2010, 59% of deaths were the result of non-communal conditions. Of which, 29% of deaths were related to cardiovascular complications. approximately 10 million people in a year die resulting from cardiovascular complications[5].

Regardless of how many precautions are taken to prevent heart attacks, the fact remains that it is still the leading cause of death. Most heart attacks could be somewhat maintained if the patient is to receive the needed medical attention in time. However, not everyone knows what a heart attack is like or what to do in case of such an emergency; hence a lot of heart attacks amount to death due to either the patient not being aware or not being able to seek medical attention in sufficient time.

The Electrocardiogram (ECG) is an essential diagnostic tool that measure and record the electrical activity of the heart. A wide range of heart conditions can be detected when interpreting the recorded ECG signals. These qualities make the ECG a perfect instrument for patient monitoring and supervision. The commonly used ECG machine used for diagnosis and supervision at present is expensive.

This research is a study of the possibility of manufacturing a small sized ECG system capable of sending ECG signal via the serial port to a PC at low cost. It consists of an amplifier, filtering, microcontroller and LABVIEW as a platform for the signal monitoring.

التجريدة

وفقاً لتقرير منظمة الصحة العالمية لعام 2010 ، 59% من حالات الوفيات بالعالم كانت لاسباب مرضيه ، 29% منها مرتبطة بامراض القلب . لتقريب لاصوره لهذه النسبة فانه تقريباً 15 مليون شخص يموتون سنوياً بسبب امراض القلب .

وبالرغم من الاحتياطات الكبيرة التي تتخذها الدول المتقدمة ، الا انه تبقى الحقيقة الماثلة ان النوبات القلبية مازالت المسبب الرئيسي للوفيات هنالك .

يمكن معالجه الضرر الناتج من معظم النوبات القلبية اذا ما تلقى المريض العنايه الطبيه اللازمة بالوقت الملائم . ومع ذلك للاسف لا يعلم الجميع ما هي النوبة القلبية ولذلك فاغلب الحالات التي تؤدي الي الموت حدثت بسبب ان المريض لم يتلمس اعراضات حدوث هذه النوبة القلبية وبالتالي لم يستطع الوصول لمراكز العنايه الطبيه بالوقت الملائم .

جهاز رسم القلب هو عباره عن أداء اساسيه لقياس وتسجيل النشاطات الكهربائيه للقلب .
يمكن الكشف عن مجموعه واسعه جداً من امراض القلب بواسطه هذا الجهاز .

أغلب أجهزه القلب الموجودة حالياً بالاسواق غالبيه الثمن ولا يستطيع المرضى شرائها .

هذا البحث عباره عن دراسه لإمكانيه تصنيع جهاز رسم قلب صغير الحجم قادر على إظهار إشارته على شاشه الحاسوب وباقل تكلفه .

هذا الجهاز يتكون من مكبر ومرشحات ومحكمه دقيقه بالإضافة لبرنامج رسومي يستخدم لعرض الاشاره المأخوذه من المريض بشاشه الحاسوب .

Contents

Dedication	I
Acknowledgment	II
Abstract	III
التجريده	IV
Contents	V
List of Figures	VII
List of Tables	VIII
List of Abbreviations	IX
Chapter One : Introduction	
1.1 Background	1
1.2 Problem Statement	1
1.3 Proposed Solution	1
1.4 Proposed Objective	1
1.5 Project Methodology	2
1.6 Proposed System	3
Chapter Two: Theory	
2.1 Background	6
2.1.1 Medical instrumentation system	6
2.1.2 Biological signals	9
2.1.3 Personal computer architecture	9
2.1.4 Serial communication	11
2.1.5 Analog to digital conversion	12

2.1.5 Microcontroller	13
2.2 Literature review	15
Chapter Three: Heart Background	
3.1.1 The Heart	24
3.1.2 The ECG Waveform	25
Chapter Four: Software Development	
4.1 Firmware design	29
4.2 Computer interface(GUI tasks)	33
Chapter Five: Hardware Development	
5.1 Conditioning ECG signal	37
5.2 ECG leads	38
5.3 ECG simulator& Bioamplifier KL700	43
Chapter Six: Result and Discussion	
6.1 Introduction	53
6.2 Software	53
6.3 The ECG signal (input)	54
Chapter Seven: Conclusion and Recommendations	
7.1 Conclusion	57
7.2 Recommendations	58
References	

List of Figures

NO. OF FIGURES	TITLE	PAGE
Fig.(1.1)	Proposed system	4
Fig. (2.1)	General Medical instrumentation s	7
Fig. (2.2)	computer block diagram	10
Figure (2.3)	Serial communication concept	12
Figure (2.4)	Pin out diagram of the Microcontroller	16
Figure (2.5)	capturing ECG signals using sound card	19
Figure (2.6)	Homemade electrode with lotion on it	22
Fig. (2.7)	Simple graphical output	22
Figure (3.1)	Basic Cardiopulmonary system	24
Fig(3.2)	Electrical system of the heart	25
Figure (3.3)	The segments of a single ECG waveform.	26
Figure 4.1	MikroC	30
Figure (4.2)	PICkit2 Programming	32
Figure (4.3)	GUI software	36
Fig (6.1)	augmented limb	40
Fig.(5.2)	Einthoven's triangle	41
Fig.(5.3)	the ECG simulator	45
Fig.(5.4)	KL700 bioamplifier	45
Fig.(5.6)	the complete system	46
Fig.(5.5)	KL700 bioamplifier Block diagram	47
Fig.(5.6)	the ECG lead selector circuit	48
Fig.(5.7)	Preamplifier circuit	49
Fig.(5.9)	Band-pass filter circuit	50
Fig.(5.10)	Gain amplifier	51
Fig.(5.11)	Bands reject filter circuit	52
Figure (6.1)	ECG signal	53
Figure (6.2)	Block diagram of LABview interface	54
Figure (6.3)	Graphic User Interface	54
Figure (6.4)	Output signal.	55

List of Tables

NO. OF FIGURES	TITLE	PAGE
Table 3.1	Cardiovascular abnormalities and their ECG characteristics	27
Table 3.2	Nominal ECG Parameters	28
Table 3.2	Nominal ECG Parameters	42

LIST OF ABBREVIATIONS

ADC	Analogue to Digital Converter
CTS	Clear To Send
CPU	Central processing unit
ECG	Electrocardiogram/Electrocardiograph
EEG	ElectroEncephaloGram
EMG	ElectroMyoGram
LAN	Local Area Network
MEG	MagnetoEncephaloGram
GUI	Graphical User Interface
GSR	Galvanic Skin Response
HRV	Heart Rate Variability
OP	Operational Amplifier
PC	Personal Computer
PIC	Programmable Intelligent Computer
RAM	Random Access Memory
REM	Random Eye Motion
RS-232	Recommended Standard 232
Rx	Receive Data
RTS	Request To Send
SMD	Surface Mounted Device
Tx	Transmitted Data