ABSTRACT

Simplified and accurate methods of analysis are required for quick, repetitive and low cost analysis of tall buildings.

In this work a new simplified analysis method called the "Moment Transformation Method" is developed and used to analyze two and three dimensional tall buildings subjected to vertical and horizontal loads. A computer program "MTProg" is developed and implemented for the method. Several different two and three dimensional problems are analyzed by using the program and the results obtained are verified by comparison with the published results.

A case study of a fifteen floors multi-storey building subjected to non-symmetrical lateral loading is analyzed by using the three dimensional option of the program. The accuracy of the results is verified by using the structural analysis packages ETABS and STAADPro.

The results used for verification are:

- (i) The lateral displacements and the twist rotations of the joints at each floor level.
- (ii) Bending moments, shear forces, torsion moments and axial loads induced in the vertical members. (iii) The contour of the moments and shear stresses induced in the floor slabs.

The comparison shows, clearly, that the results are in good agreement, thus verifying the accuracy of the proposed method.

•

مستخلص:

هنالك حاجة لطرائق مُبسَطة و دقيقة للتحليل السريع والمتكرر وقليل التكلفة للمباني العالية .

في هذا البحث تم تطوير طريقة تحليل مُبَسَطة وجديدة هي طريقة نقل العزوم, "Moment المعادول المعاد والثلاثي الأبعاد للمباني العالية العالية المعرضة لأحمال أفقية ورأسية في وقت واحد.

تم تطوير برنامج الحاسوب "MTProg" للطريقة المقترحة وتطبيقه.

حللت عدة مسائل ثنائية وثلاثية الأبعاد بإستعمال البرنامج وتم النحقق من النتائج بمقارنتها مَع النَتائِج المَنْشُورة.

وفي دراسة حالة تم تحليل بناية متعددة الطوابق مكونة من خمسة عشر طابقاً أخضعت لتحميل جانبي غير متماثل وذلك بإستخدام الخيار الثلاثي الأبعاد للبرنامج. تم التحقق من دقة النتائج بالمقارنة مع النتائج المتحصل عليها بإستخدام برنامجي التحليل الإنشائي ETABS و STAADPro .

النَّتائجَ المستخدمة للتحقق شملت:

(i) الإزاحات الجانبية والدورانات في المفاصلِ في كُل المستويات. (ii) عزوم الثني و قوى القص و عزوم الإلتواء والقوى المحورية في الأعضاء الرأسية. (iii) خطوط الكنتور للعزوم وإجهادات القص في البلاطات. المقارنات تؤكد و بشكل واضح أن هنالك توافقاً جيداً بين النتائج ، مما يؤكد دقة الطريقة المقترحة.

DEDICATION

To the cherished memory of my father.

To my mother, whose prayers supplication gave me support and confidence.

To my patient family, whose forbearance has been incentive to work hard on this research.

To the new generation my kids, Rayyan, Mahmood, Baddory, Riham, I hope for them good future.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to:

Dr. Abdel Rahman Elzubeir Mohamed

For his guidance and supervision, patience, encouragement, support and friendly approach towards me throughout the lengthy process of this work.

I wish to thank my wife Eng. Manahil for all the patience and support she has provided.

I am thankful to my dear brother, Automation Engineer Osama, who put me in the right track.

Thanks a lot to my brothers Engs. Zuhair, Abukashawa, Elhadi, Aasim, Magzob, Amro, Ahmed, Ayman, for their continuous help and support.

Lastly but not least the individuals whose names are over looked and not mentioned above, for every kind of support, help and cooperation in this work.

TABLE OF CONTENTS

ABSTRACT	I
ARABIC ABSTRACT	II
DEDICATION	III
ACKNOWLEDGMENTS	IV
TABLE OF CONTENTS	V
LIST OF FIGURES	IX
LIST OF TABLES	XIV
LIST OF SYMBOLS	XVI
Chapter One: General Introduction	1
1.1 Introductory Remarks	1
1.2 Objectives	2
1.3 Methodology of Research	2
1.4 Outlines of thesis	3
Chapter Two: Literature Review	4
2.1 Introduction	4
2.2 Methods of Analysis of Shear Walls	4
2.3 Concluding Remarks	11
Chapter Three: The Moment Transformation Method	12
3.1 Simplification of the methods of analysis	12
3.2 Diaphragm or In-Plane Rigid Body Assumption	13
3.3 Reduction of the Total Degrees of Freedom by	
Considering Rotations only	14
3.4 Sway Fixed Ends Moments	15
3.5 The Proposed Moment Transformation Method	17
3.5.1 Introduction	17
3.5.2 The Theory and the Method Description	17
3.5.3 Prismatic members with bending deformations only	20
3.5.4 Simplified Systematic Procedure	21
3.5.5 Application of the Moments Transformation Method	
for continuous beams and multi-bays frames	22

	3.5.5.1 Continuous beam subjected to Vertical Loads	22
	3.5.5.2 Multi Bays Sub Frame Subjected To Vertical Loads	26
	3.5.5.3 Multi Bays Sub Frame Subjected To Vertical Loads	
	and horizontal load on column	30
	3.5.6 Application of the Moments Transformation Method	
	for a single post subjected to side sway	33
3.6	Algorithm for the continuous multi-bays frames	37
3.7	Features of developed Computer Program for the	
	continuous multi-bay frames	38
3.8	Optimization of the Moments Transformation Procedure	38
3.9	Transformation Procedure Algorithm	43
	3.9.1 General Subroutine flow chart	44
	3.9.2 Optimized Subroutine flow chart	45
3.10	Generalization of the Method to Two and Three Dimensional	
	Multi-storey buildings	47
	3.10.1 Equivalent stiffness matrix and moment transformation	
	factors matrix	48
	3.10.2 Total Transformation Factors matrix from one	
	level to a far level	48
	3.10.3 Transformation of the moments from level # j to level # i	48
	3.10.4 The joints rotations and the final moments at each level	49
3.11	The Condensed Stiffness and the Carry-over Moments	
	Matrices for two and Three Dimensional Systems	50
	3.11.1 The condensed Stiffness and the Carry-over Moment	
	for single member	51
	3.11.2 The condensed Stiffness and the Carry-over Moments	
	matrices for two members	54
	3.11.3 Example of Condensed Stiffness and Carry-over	
	moments matrices for a system of two columns	56
3.12	2 Condensed Stiffness Matrix and Carry-over Moments	
	Matrix for a Multi walls Structural System (More	
	Than Two Walls)	62

3.13 The Sway Fixed End Moments for single post	
and Two Dimensional Structural Systems	65
3.14 Three dimensional Analyses of Shear Walls	
irregularly arranged in the Building Plan	66
3.14.1 Three Dimensional Analysis of Building	
composed of one Shear Wall	68
3.14.2 Three Dimensional Analysis of Building Composed	
of Two Shear Walls	70
3.14.3 Compatibility check and calculation of the	
Global Displacements x , $y \& rz$	75
3.14.4 The Fixed Ends Moments in the Direction of the	
Two Degrees of Freedoms of the Shear Walls	79
3.15 The level rotation stiffness	81
3.16 The Lateral Joint Displacement and the Shear Force in	
the Member	82
3.17 The Lateral Stiffness Matrix of the Structure	84
Chapter Four: Application of Computer Program MTProg	85
4.1 Introduction	85
4.2 Description of the Program MTProg	85
4.2.1 The two Dimensional analysis	86
4.2.2 The Three Dimensional analysis	88
4.3 Two Storey Single Bay Frame	92
4.4 Three Dimensional Multi-bay four storey building	94
4.5 Multi-bay Twenty Storey Structure	98
4.6 Single storey building with three shear walls	101
4.7 Three stories building with three shear walls	103
4.8 Four Storey Single Bay pin supported frame	106
4.9 Two-Storey double Bay Frame	108
4.10 Summary	110
Chapter Five: Case Study and Analysis of Results	111
5.1 Introduction	111
5.2 Fifteen storey square building subjected to	
unsymmetrical lateral loading	111

5.2.1 Comparison of global lateral Displacements	112
5.2.2 Comparison of Shear forces and bending moments	
in the shear walls	115
5.2.3 Comparison of bending moment contour in the	
floor slabs	122
5.3 Modification of Results	129
5.4 No Axial Deformation STAADPro Model	130
5.5 Concluding Remarks on effect of Modification	132
5.6 Comparison of the Computer Storage and the	
Running Time	132
5.6.1 Computer storage comparison	132
5.6.2 Running time comparison	134
Chapter Six: Conclusions and Recommendations	135
6.1 Conclusions	135
6.2 General and Future Recommendations	137
References	138
Appendices	141
Appendix A: Program Listings	142
Appendix B: User Guide	157
Tutorial 1: Two Dimensional Analyses	157
Tutorial 2: Three Dimensional Analyses	168

LIST OF FIGURES

Figure 3.1 : Springs Model	14
Figure 3.2a: Intermediate storey of a multistory frame	15
Figure 3.2b: End-forces corresponding to Sway	
without Joint Rotation of a typical Column ab	16
Figure 3.3: Two Members Frame (a) System #1 (b) System #2	17
Figure 3.4: The Equivalent Member	18
Figure 3.5: Two Members Frame	20
Figure 3.6: The Equivalent Member	20
Figure 3.7: Continuous Beam subjected to Vertical Loads	22
Figure 3.8: The Fixed End Moments of the Continuous Beam	22
Figure 3.9: The Equivalent Stiffness and the Transformation Factors	23
Figure 3.10: The Bending Moments Diagram of the Continuous Beam	25
Figure 3.11: Multi Bays Sub Frame Subjected To Vertical Loads	26
Figure 3.12: The Fixed Ends Moments of the Frame	26
Figure 3.13: The Equivalent Stiffness and the Moments	
Transformation Factors	27
Figure 3.14: The Bending Moments Diagram of the Frame	29
Figure 3.15: Multi Bay Sub Frame with Load on Column	30
Figure 3.16: The Fixed Ends Moments of the Frame	30
Figure 3.17: The Equivalent Stiffness and the Moments	
Transformation Factors	31
Figure 3.18: The Bending Moments Diagram of The Frame	33
Figure 3.19: Frame Subjected to Horizontal Loads and it's	
Substitute Frame	33
Figure 3.20: The Sway Fixed Ends Moments	34
Figure 3.21: The Equivalent Stiffness and the Moments	
Transformation Factors	34
Figure 3.22: The Bending Moments Diagram of the Substitute Frame	36
Figure 3.23: The Numbering Sequence of the Frame	37
Figure 3.24 The Three Moments Near The Joint # <i>I</i>	38
Figure 3.25: Beam # <i>I</i> and the Neighboring Members	38
Figure 3.26: Part of the Structure	39
Figure 3.27: The Original and the Equivalent Stiffness	
of the Structure Part	39
Figure 3.28: Equivalent Stiffness and Transformation Factors	
Calculations Procedure	40
Figure 3.29: Transformations of the Moments toward Joint # <i>I</i>	40
Figure 3.30: The Equivalent Stiffness and the Final Moments	
at Joint # I	41
Figure 3.31: Optimization Procedure for the moment transformation	42
Figure 3.32: Flow Chart of Main Program	44
Figure 3.33a: Flow Chart of General Subroutine	45

Figure 3.33b: Flow Chart of Optimized Subroutine	46
Figure 3.34: Continuous Frame with one Floor Level	47
Figure 3.35: Frame with Single Post and Multi-Storey Two	
or Three Dimensional Building	47
Figure 3.36: Moments of the Concerned Level	49
Figure 3.37: Symmetrical frame subjected to symmetrical lateral loads	50
Figure 3.38: Rotation And Translation DOF s of a Single Member	51
Figure 3.39: Condensed rotation Stiffness with Translation Permitted	51
Figure 3.40: Carry-over Moment for a Single Member	53
Figure 3.41: Rotations and Translation DOF s of a two Members	
System	54
Figure 3.42: Condensed Stiffness Coefficient Corresponding	
to Displacement D1	55
Figure 3.43: Condensed Stiffness Coefficient Corresponding	
to Displacement D2	55
Figure 3.44: Carry-over Moment Coefficient t_{ij}^*	56
Figure 3.45: Rotations and Translation DOF s of a Two	
Members System	56
Figure 3.46: Example of a System Composed of Two Columns	57
Figure 3.47: Calculations of Stiffness Coefficients $S_{11}^* \& S_{21}^*$	58
Figure 3.48: Carry-over Moment Coefficient t_{ij}^*	59
Figure 3.49: Calculations of Stiffness Coefficients S^*_{12} & S^*_{22}	60
Figure 3.50: Rotations and Translation DOF s of	
a Multi-Columns System	63
Figure 3.51: Assumed deformed shape corresponding	
to Displacement D1	63
Figure 3.52: Calculation of the Carry-over Coefficient t_{ij}^*	
Corresponding To S_{ij}^*	64
Figure 3.53: Sway Fixed Moments of a Single Post and	٥.
a Multiple Columns Systems	65
Figure 3.54: (a) In-Plane Floor Local and Global	
Displacements (b) sign convention	66
Figure 3.55: Translation and Twist Stiffness of a Wall	66
Figure 3.56: One Shear Wall Structural System	69
Figure 3.57: Rotation and Translation Stiffness of a Member	70
Figure 3.58: Two Shear Walls Structural System	70
Figure 3.59: Stiffness Coefficients Corresponding	
To Displacements Sets # 1 & # 4	73
Figure 3.60: Calculation of The Carry-over Moments Coefficients	74
Figure 3.61: Structural System of (m) Number of Shear Walls	75
Figure 3.62: Selection of the Suitable DOFs	76
Figure 3.63: Transformation of the Global Forces to the	
Wall Shear Center	77

Figure 3.64: The Building Global Forces	79
Figure 3.65: The Local Displacements of a Wall	80
Figure 3.66: The Wall Sway Fixed End Moments	80
Figure 3.67: Degrees of Freedoms of the Two Ends of Member # <i>I</i>	82
Figure 3.68: Building Subjected To Unit Load At	
A Certain Floor Level	84
Figure 4.1: The program MTProg interaction screen Layout	85
Figure 4.2: The multi-page data input of the two dimensional analysis	86
Figure 4.3: The results page of the two dimensional analysis	87
Figure 4.4: The floor building dimensions form	88
Figure 4.5: Main form of the three dimensional analysis	89
Figure 4.6: Global deformed shape	90
Figure 4.7: STAADPro Floor stiffness and Fixing Moments form	90
Figure 4.8: Deformed shape of a concerned floor	91
Figure 4.9: Moment Mx contour of a concerned floor	91
Figure 4.10: Frame properties and loading	92
Figure 4.11: Bending-moment diagram from ref.[1]	93
Figure 4.12: Comparison of Bending-moment diagram	
for two floor-one bay portal	93
Figure 4.13: 3-D Multi-bay, 4 Storey Building plan	95
Figure 4.14 Substitute frame, Shear wall and frame properties	
and loading for 3-D, 4 storey Building	95
Figure 4.15: Bending-moment diagrams of shear wall	
and equivalent column, ref[1]	96
Figure 4.16: B.M.D. of the equivalent shear walls	
(3-D, 4 storey Building)	97
Figure 4.17: B.M.D. of the equivalent column of the	
substitute frame (3-D, 4 storey Building)	97
Figure 4.18: Reference[1], Forces resisted by shear walls and	
bending-moments of the equivalent shear wall and equivalent	
column in a 20-storey building (moments in terms of $Ph/10$)	98
Figure 4.19: Comparison of the B.M.D. of the	
equivalent shear wall, Multi-bay, Twenty Storey	100
Figure 4.20: Comparison of the B.M.D. of the equivalent	
column of the substitute frame, Multi-bay, Twenty Storey	101
Figure 4.21: A one-storey structure, Plan of shear walls	
and coordinates system	102
Figure 4.22: Forces resisted by the various walls from ref.[1]	102
Figure 4.23: Forces resisted by the various shear walls, ref.[1]	105
Figure 4.24: Portal frame subjected to both vertical and	
horizontal loads	106
Figure 4.25: MTProg. Bending moment diagram	107
Figure 4.26: Two storey portal frame subjected to both	
vertical and horizontal loads	108

Figure 4.27: MTProg Bending-moment diagram of frame	
subjected to Horizontal and vertical loads	109
Figure 4.28: MTProg Bending-moment diagram of frame	
subjected to vertical loads	109
Figure 4.29: MTProg. Bending-moment diagram of frame	
subjected to horizontal loads	110
Figure 5.1:12m x 12m floor plan for 15 stories, Square Building	111
Figure 5.2 : Displacements of the origin (Column # 5) in x -direction	113
Figure 5.3: Displacements of the origin (Column # 5) in y-direction	113
Figure 5.4: Rotations of the origin (Column # 5)	114
Figure 5.5: MTProg Global deformed shape	114
Figure 5.6: MTProg bending moment diagram for shear wall # 1	115
Figure 5.7: MTProg bending moment diagram for shear wall # 2	116
Figure 5.8: MTProg bending moment diagram for shear wall #3	116
Figure 5.9: MTProg bending moment diagram for shear wall # 4	117
Figure 5.10: Comparison of B.M.D. for shear wall #1 from	
the different programs	118
Figure 5.11: Comparison of S.F.D. for shear wall # 1 from	
the different programs	118
Figure 5.12: Comparison of B.M.D. for shear wall # 2 from	
the different programs	119
Figure 5.13: Comparison of S.F.D. for shear wall # 2 from	
the different programs	119
Figure 5.14: Comparison of B.M.D. for shear wall # 3 from	
the different programs	120
Figure 5.15: Comparison of S.F.D. for shear wall # 3 from	
the different programs	120
Figure 5.16: Comparison of B.M.D. for shear wall # 4 from	
the different programs	121
Figure 5.17: Comparison of S.F.D. for shear wall # 4 from	
the different programs	121
Figure 5.18: MTProg moment <i>Mx</i> contour in kN.m/m	
for floor slab # 1	123
Figure 5.19: STAADPro moment <i>Mx</i> contour in kN.m/m	
for floor slab # 1	123
Figure 5.20: MTProg moment My contour in kN.m/m	
for floor slab # 1	124
Figure 5.21: STAADPro moment My contour in kN.m/m	
for floor slab # 1	124
Figure 5.22: MTProg moment Mx contour in kN.m/m	
for floor slab # 8	125
Figure 5.23: STAADPro moment Mx contour in kN.m/m	
for floor slab # 8	125

126
126
127
127
128
128
133
134

LIST OF TABLES

Table 3.1: Example 3.5.6 Spreadsheet Data Input	36
Table 3.2: Example 3.5.6 Spreadsheet Out Put Results	36
Tables 4.1 Comparison of bending moments (multiplier $qb^2/100$)	92
Table 4.2: Results for column # 1 (left column):	93
Table 4.3: Results for column # 2 (right column)	94
Table 4.4: Comparison of Lateral Displacements	
(multiplier = $10 P/Eh$)	95
Table 4.5: Comparison of Wall Shear force (multiplier = P)	96
Table 4.6: Comparison of Substitute Frame Column Shear	
force (multiplier = P)	96
Table 4.7: Results for equivalent shear wall	96
Table 4.8: Results for equivalent column of substitute frame	97
Table 4.9: Comparison of Wall Shear forces (multiplier = P)	
Multi-bay Twenty storey	98
Table 4.10: Results for equivalent shear wall	99
Table 4.11: Results for equivalent column of substitute frame	100
Table 4.12: Shear walls properties, 3-storey, three shear walls	101
Table 4.13: Global displacements of the shaft center from MTProg	102
Table 4.14: MTProg Shear forces and moments in shear wall # 1	102
Table 4.15: MTProg Shear forces and moments in shear wall # 2	103
Table 4.16: MTProg Shear forces and moments in shear wall # 3	103
Table 4.17: Global Displacements of the top	103
Table 4.18: Shear Walls Forces and torsion in the different shear	
walls	103
Table 4.19: Comparison of the Global Displacements of the top floor	104
Table 4.20: Comparison of the Global Displacements of the middle	
floor	104
Table 4.21: Comparison of the Global Displacements of the bottom	
floor	104
Table 4.22: Comparison of the Shear Walls Forces and torsion	
in the different shear walls at the top floor	104
Table 4.23: Comparison of the Shear Walls Forces and torsion	
in the different shear walls at the middle floor	104
Table 4.24: Comparison of the Shear Walls Forces and torsion	
in the different shear walls at the bottom floor	105
Table 4.25: The program MTProg global displacements of	
the shaft center	105
Table 4.26: MTProg Shear forces and moments in shear wall # 1	106
Table 4.27: MTProg Shear forces and moments in shear wall # 2	106
Table 4.28: MTProg Shear forces and moments in shear wall # 3	106
Table 4.29: Comparison of the bending moment diagrams	107

Table 4.30: Comparison of the Results for moments in	
kip-in from ref.[17] and from MTProg program respectively	108
Table 5.1: Comparison of the maximum shear force	
and bending moment	115
Table 5.2: Comparison of the displacement of the origin	
at the top floor (Torsion considered)	129
Table 5.3: Comparison of the maximum shear force and	
bending moment (Torsion considered)	130
Table 5.4: Comparison of the displacement of the origin	
at the top floor (Torsion released)	130
Table 5.5: Comparison of the maximum shear force	
and bending moment (Torsion released)	130
Table 5.6: Comparison of the displacement of the origin	
at the top floor (No axial Torsion considered)	131
Table 5.7: Comparison of the maximum shear force	
and bending moment (No axial Torsion considered)	131
Table 5.8: Comparison of the displacement of the origin	
at the top floor (No axial Torsion released)	131
Table 5.9: Comparison of the maximum shear force	
and bending moment (No axial Torsion released)	131
Table 5.10: Total real numbers required for storage	
of the global stiffness matrix for the transformation	
and the conventional methods of analysis	133
Table 5.11: Computing time required for the analysis	
of the models for the programs MTProg and STAADPro	134

LIST OF SYMBOLS

 D_i The displacements corresponding to the stiffness configuration #j. \boldsymbol{E} Modulus of elasticity. FEThe moment transformation factor. GModulus of torsional rigidity. h Height of a rigid frame. Moment of inertia. LLength of member. M Bending Moment. SE and KE The equivalent stiffness. S*iiThe elements of the condensed rotational stiffness (the modified rotation stiffness). S^* The modified or the condensed stiffness of the member. S_i The ordinary rotation stiffness of member # i ($S_i = 4EI/L$, considering bending deformation only). The rotational stiffness of shear wall #i in the u-direction, due to $(SR1)_i$ rotation of 1 radian and translation not permitted. $(SR_2)_i$ The rotational stiffness of shear wall #i in the v-direction, due to rotation of 1 radian and translation not permitted. $(SRT_1)_i$ The rotation stiffness of shear wall # i in the u-direction, due to translation of 1 unit length and rotation not permitted. The rotation stiffness of shear wall # i in the v-direction, due to $(SRT_2)_i$ translation of 1 unit length and rotation not permitted. $(ST_{ij})_k$ The translation stiffness of shear wall #k transformed to the building global coordinates, the transformation matrix used in the transformation of the wall stiffness is due to a unit translation in x & y directions and unit rotation about the z coordinate. The modified carry-over moment. The ordinary carry-over moment of member # i ($t_i = 2EI/L$, t_i Considering bending deformation only). VShear Force. Poisson's Ratio. ν θ The rotation angle in radians. $[A]_i$ The Condensed Rotation Stiffness Matrix of The Floor # i. $[BC]_i$ The Carry-over Moments Matrix of The Floor # i. $[FF]_i$ The Transformation Factors Matrix of The Floor # i. $[FF]K+1 \rightarrow K+2$ The Transformation Factors Matrix of Floor between. level #K+1 and level K+2. $[FT]K \rightarrow K+i$ The total transformation factors matrix used to transform. the moments at level # K toward the level # K+i, $(i \ge 1)$. $[GG]_i$ The Equivalent Rotation Stiffness Matrix of The Floor # i.

[KT]i	The total stiffness matrix at the level $\# i$.
$[NN]_i$	The Over All Rotation Stiffness Matrix of the Level # i.
$\{ MTOT \}_i$	The total moments at level # <i>i</i> .
$\{ MB \}_i$	The original and the transformed moments just below the level $\# i$.
$\{MT\}_i$	The original and the transformed moments just above the level $\# i$.
$\{MS\}_i$	The original moments at the beams ends of the level $\# i$.
$\{ROT\}_i$	The rotations of the joints at the level $\# i$.
$\{MBf\}_i$	The final moments just below the level # <i>i</i> .
$\{MTf\}_i$	The final moments just above the level # <i>i</i> .
$\{ MSf \}_i$	The final moments at the beams ends of the level $\# i$.
$[B]_{\mathrm{i}}$	The transformation matrix of shear wall $\#i$.
[D]	Displacement matrix corresponding to the condensed stiffness matrix
$[F_i]_{j}$	The internal force at wall# i in the j displacement configuration.
$[S^*]$	The condensed rotation stiffness matrix.
$[S_{ij}]$	Sub-Matrices of the main matrix.
$[t^*]$	The carry-over moments matrix.
$[u \ v \ rw]_{i}^{T}$	The local displacements vector, corresponding to the condensed
	or the adjusted rotation stiffness S_{ji}^* .
$\begin{bmatrix} x & y & rz \end{bmatrix}^T_i$	The global displacements vector, corresponding to the condensed
	or the adjusted rotation stiffness S_{ji}^* .
[I]	Identity matrix.
[0]	Null matrix.