

بسم الله الرحمن الرحيم

قال تعالى :

قُلْ - أَنَّا بِاللَّهِ وَمَا أَنْزَلَ عَلَيْنَا وَمَا أَنْزَلَ عَلَيْكَ إِبْرَاهِيمَ
وَإِسْمَاعِيلَ وَإِسْحَاقَ وَيَعْقُوبَ وَالْأَسْبَاطِ وَمَا أُوتِيَ
مُوسَىٰ وَعِيسَىٰ وَالنَّبِيُّونَ مِنْ رَبِّهِمْ لَا نُفَرِّقُ بَيْنَ أَحَدٍ
مِنْهُمْ وَنَحْنُ لَهُ مُسْلِمُونَ 84

(صدق الله العظيم)

84 (سورة آل عمران الآية

Dedication

- To my family.
- To my parents.
- To my university and my teachers in my every step of education.
- To my friends.

Acknowledgement

First of all, i would like to thank my great god for help me to complete this research.

I would like to express my deepest appreciation to my supervisor Dr. Nagm Eldeen Abdo Mustafa Hassanian for all his assistance during this master thesis work, and everybody help me to success of this research.

Abstract:

In this research a high performance battery charger for hybrid electric vehicle is designed to charge the batteries of hybrid electric vehicles, which used fuel-powered and electricity. Three-phase boost rectifier (universal bridge) using diode and isolated gate bipolar transistor is used. It has advantages of Bi-directional power transfer capability and unity power factor operation. To control the DC output voltage the voltage Oriented Control method with pulse width modulation has been used.

Matlab/Simulink software is used to simulate the mathematical model. The DC output voltage with unity power factor (reactive power equal to zero) is obtained.

The charger of hybrid electric vehicle battery must be fully adapted to the battery to preserve the battery from damage and prevent harmonic current in the grid.

المستخلص

في هذا البحث تم تصميم شاحن ذو كفاءة عالية يمكن استخدامه لشحن البطاريات في السيارات الكهربائية الهجين والتي تعمل بنظام الوقود والكهرباء. تستخدم في تحويل القدرة مقومة القنطرة العامة ثلاثة الأطوار التي تستخدم الثنائي مع الترانزistor الثنائي القطبية ذو البوابة المعزولة. وهذه الألية تمتاز بأنها ثنائية الاتجاه في تحويل التيار وتحسين لمعامل القدرة. للتحكم في عملية التقويم وللحصول على جهد مستمر دون تمويجات تم استخدام تقنيه تعديل عرض النبضة ومخاطط السيطرة علي الجهد الموجه وهي من أفضل الطرق عالية الأداء للتحكم في الجهد الناتج عن عملية التقويم

تم استخدام برنامج المحاكاة (Matlab\Simulink) لتمثيل النموذج الرياضي الكامل للنظام . وتم الحصول على جهد مستمر كامل التقويم مع معامل قدره الوحدة.

شاحن البطارية المستخدم في السيارة الكهربائية الهجين يجب أن يكون ملائم للجهد بشكل جيد للحفاظ على البطارية من التلف وكذلك لمنع حدوث التيار التوافقي في الشبكة الناتجة من عملية التقويم.

Table of Contents

Description	Page
No	

Quran Verse	I
Dedication	II
Acknowledgement	III
Abstract	IV
Table of contents	VI
List of Figures	IX
List of Tables	XI
List of Abbreviations	XII

Chapter One

Introduction

1.1 Overview	1
1.2 Electric Vehicle properties	2
1.3 Hybrid Electric Vehicle Battery Charger	2
1.4 Problem Statement	3
1.5 Objectives:	3
1.6 Methodology	3
1.7 Outline of the thesis	4

Chapter two

Literature Review

2.1 Introduction	5
2.2 Diode Rectifier	5
2.3 Three Phase Control Rectifier	6
2.4 Rectifier Topologies	7
2.4.1 Simple solution of the boost converter	7
2.4.2 Rectifier Using PWM Modules	8
2.4.3 Vienna rectifier	8
2.4.4 Universal bridge topology	9
2.5 Features of Rectifier Topologies	10
2.6 Control Techniques of PWM rectifier	10
2.6.1 Direct Power Control (DPC)	10

2.6.2 Voltage Oriented Control (VOC)	12
--------------------------------------	----

Chapter Three

Mathematical Model of Three Phase Boost PWM Converter Using Voltage

Oriented Control

3.1 Introduction	15
------------------	----

3.2 Characteristics of Boost PWM Converter	15
--	----

3.3 Operation of the Voltage Source Rectifier	15
---	----

3.4 Description of PWM Rectifier (Universal Bridge)	17
--	----

3.5 mathematical model of PWM Rectifier(Universal Bridge)	19
--	----

3.6 Coordinate transform	22
--------------------------	----

3.7 Active and reactive power	25
-------------------------------	----

3.8 DC-Link Voltage	26
---------------------	----

3.9 Pulse Width Modulation	27
----------------------------	----

3.10 Phase Look Loop (PLL)	28
----------------------------	----

3.11 Decoupled Controller	29
---------------------------	----

3.11.1 Proportional Integral controller (PI)	29
--	----

3.11.2 DC-link voltage controller	30
-----------------------------------	----

3.11.3 Current controller	31
---------------------------	----

3.12 HEV Batteries	32
--------------------	----

3.13 Complete System block diagram	32
------------------------------------	----

Chapter Four

Results and Discussions

4.1 Introduction	34
4.2 Simulation of the model with stops pulsing	34
4.3 simulation results of battery charger using voltage oriented control with V_{dc-ref} set to 200V	40
4.4 Simulation results of battery charger using voltage oriented control with V_{dc-ref} set to 300V	42
4.5 Comparison between the three cases result	44
Chapter Five	45
Conclusion and Recommendations	
5.1 Conclusion	45
5.2 Recommendations	46
References	47
Appendices	49

List of Figures

Figure NO	Description	Page NO
2.1	Three Phase Uncontrolled Diode Rectifier	6
2.2	Simple solution of the boost converter	7
2.3	Rectifier Using PWM Modules	8
2.4	Vienna rectifier	9
2.5	Universal bridge topology	9
2.6	Block scheme of (DPC)	11
2.7	Voltage Oriented Control Scheme	13

3.1	bidirectional PWM converter	16
3.2	three phase rectifier modeling (universal bridge)	17
3.3	single line diagram of three phase rectifier	18
3.4	Pharos diagram of the three phase rectifier	18
3.5	Block diagram of PWM rectifier	21
3.6	three phase abc to $\alpha\beta$	22
3.7	Clarke transform	22
3.8	two phase $\alpha\beta$ to dq	23
3.9	park transform	23
3.10	simulation of ABC to DQ transformation	24
3.11	DC-link voltage condition	26
3.12	Sinusoidal PWM	26
3.13	switching pattern of Sinusoidal PWM	27
3.14	Decoupled controller (current and dc-link voltage controller)	28
3.15	Simulink of DC-link voltage controller	30
3.16	Current controller block diagram	31
3.17	system block diagram	36
4.1	complete simulink of battery charger using(VOC) connected to battery	37
4.2	DC output voltage when stop pulsing (uncontrolled rectifier).	36
4.3	active power in (kw). (Uncontrolled rectifier).	38
4.4	reactive power (k var). (uncontrolled rectifier).	38
4.5	dc output voltage of the model with $V_{dc_ref}=200V$	39
4.6	active power of the system model with $V_{dc_ref}=200V$	40
4.7	reactive power of the system model with $V_{dc_ref}=200V$	40

4.8	dc output voltage of the model with $V_{dc-ref}=300V$	41
4.9	active power of the system model with $V_{dc-ref}=300V$	42
4.10	reactive power of the system model $V_{dc-ref}=300V$	42

List of Tables

Table No.	Description	Page NO
2.1	three phase rectifier topologies performance comparison	10
4.1	Table (4.1) shows the parameters of the complete model	34
4.2	Table 4.1 comparison of diode rectifier and VOC of boost PWM rectifier with $V_{dc-ref}=200V$ and $300V$	43

List of Abbreviations

Symbol	Descriptions
Is	
PWM	Pulse width modulation
IGBT	Isolated gate bipolar transistor
PLL	Phase Lock Loop
VOC	Voltage oriented control
DPC	Direct power control
Li-ion	Lithium -ion
HEV	Hybrid electric vehicle
PI	Proportional Integral
PFC	Power Factor Correction
VCO	voltage controlled oscillator

