
Chapter one 

Background and literature review 

1.1: Background: 

In this section we will explain briefly how the new data type had been 

defined, the using of double linked list, the operators that had been overloaded 

and the implementation of this new data type. 

1.1.1: Defining new data type: 

Our research concerned with defining new data type, we called this type of 

number a bigint (for big integer). The bigint class (wee  wwiillll  uussee  tthhee  C++ concept 

of a class which is a structure that can hold data and functions that operate on 

that data) implements integers with unlimited size. 

It is conceptually simplest to implement our new data type in decimal and 

represent each integer as an integer of base 1000. 

1.1.2: Double linked list: 

Double linked list is our storage structure, it is a linked list, in which each 

node contains a pointer to a next node and a pointer to a previous element in 

the list.  

We used double linked list because in a standard linked list, you can only 

traverse the list in one direction. It may be useful however, to be able to go 

both forwards and backwards when traversing a linked list. In order to allow 

this, we need each node to contain not one, but two references to nodes one to 

the next node in the list and one to the previous node in the list. 



 

Each number will be represented in a separate list, our base is 1000 so, their 

will be three digits per node in the list.   

1.1.3: Overloading operators and defining functions: - 

C++ allows the user to overload most of the operators to work 

effectively in a specific application. C++ does not allow the user to create new 

operators. Most of the existing operators can be overloaded to manipulate class 

objects. 

1.1.3.1: Stream operators (Input/Output): 

 The istream operator >> and the ostream operator << are overloaded.  

1.1.3.2: Arithmetical Operators:  

Arithmetic on large integers is often necessary in general and in 

cryptography especially. So, bigint support the classical algorithms of 

overloading the addition, subtraction, multiplication and division giving a 

quotient and remainder operators and they can be used in exactly the same way 

as for machine types in C++ (e.g. int).  

1.1.3.3: Relational Operators:  

The binary operators ==, !=, >=, <=, >, < and the unary operator ! 

(Comparison with zero) are overloaded and can be used in exactly the same 

way as for machine types in C (e.g. int).  

Functions: 

Various numbers of functions were declared which are:  

-Functions related to number theory such like the Extended Euclidean 

algorithm and an algorithm for modular arithmetic. 

-Functions related to RSA algorithm such like random function to 

generate large integer numbers, RSMA Function, encrypt and decrypt 

functions. 



 

1.1.4: Case study: 

After implementing bigint data type, arithmetic operators, relational 

operators, functions related to number theory and others functions, it is 

important to test our new data type.  

We find that RSA represent an excellent case study to use bigint class. 

Therefore there are too many functions concerned to RSA function must be 

declare, just like random functions, RSMA function and encryption and 

decryption functions. 

1.2: Literature Review: 

Integers are whole numbers, and never have a decimal point. They are 

broken down into several types, so let’s see BIGINT data type in several 

languages. [20] 

Remember that a computer operates on binary data. a 1 or a 0 is stored 

in a bit, and eight bits is a byte. That means that one byte can only hold a finite 

number of integer values. If you want a bigger integer, you need another byte. 

Therefore, a MySQL TINYINT has a storage size of 1 byte, meaning that it can 

store values from -128 to 127. One of the bits is used to store the sign (positive 

or negative). If you declare a TINYINT as UNSIGNED, it means that you want 

all eight bits to be used for storing numbers. That, in turn, means that an 

UNSIGNED TINYINT can hold values from 0 to 255. [20] 

1.2.1: SQL: 

The bigint data type is supported where integer values are supported. 

However, bigint is intended for special cases where the integer values may 

exceed the range supported by the int data type. The int data type remains the 

primary integer data type in SQL Server. [18] 



 

BIGINT provides 8 bytes of storage for integer values. Integer (whole 

number) data from -2^63(-9,223,372,036,854,775,808) through  

2^63-1(9,223,372,036,854,775,807). Storage size is 8 bytes. 

Functions will return bigint only if the parameter expression is a bigint 

data type. SQL Server will not automatically promote other integer data types 

(tinyint, smallint, and int) to bigint 

1.2.2: JAVA:[11] 

Class BigInt   

Java.lang.Object 

 

+----Java.lang.Number 

    

  +----BigInt 

Final class BigInt  

extends Number 

Multiple precision integer arithmetic.  

The BigInt class implements integers with unbounded precision. BigInts 

support the Classical Algorithms of addition, subtraction, multiplication and 

division giving a quotient and remainder.  

BigInts are a subclass of java.lang.Number so they support the 

conversion operations intValue(), doubleValue etc., just like the other forms of 

“boxed” number (classes Integer, Float, Long and Double). It is a pity that 

“Integer” was used as the name for a boxed int. “Int” would have been a more 

regular name, and it would have left the name `Integer' open for multiple 

precision integers which better model the mathematical notion of integer.  

JAVA has its data type and the following table explain the basic data 

type available in JAVA. 



 

Table 2: JAVA basic data type:[35] 

 

Type Identifier Bits Values 

Character  char  16  Unicode 2.0 

8-bit signed integer  byte  8  -128 to 127 

Short signed integer  short  16 (2 

bytes)  

-32768 to 32767 

Signed integer  int  32 (4 

bytes) 

-2,147,483,648 to +2,147,483,647 

Signed long integer  long  64 (8 

bytes) 

maximum of over 1018 

Real number (single 

precision) 

float  32 (4 

bytes) 

Maximum of over 1038 (IEEE 754-

1985)  

Real number (double 

precision) 

double  64 (8 

bytes) 

Maximum of over 10308 (IEEE 

754-1985) 

Boolean  Boolean   true or false 

1.2.3: Fortran:[50] 

Table 3: Represent FORTRAN Data Types 

 Fortran  

Data Type  
Format  Range  

   

INTEGER 

 

2's complement integer  

 

-231 to 231-1  

 

INTEGER*2 

 

2's complement integer  

 

-32768 to 32767  

 

INTEGER*4 

 

same as INTEGER  

 
 



 

INTEGER*8 

 

same as INTEGER  

 

-263 to 263-1  

 

   

LOGICAL 

 

same as INTEGER  

 

true or false  

 

LOGICAL*1 

 

8 bit value  

 

true or false  

 

LOGICAL*2 

 

16 bit value  

 

true or false  

 

LOGICAL*4 

 

same as INTEGER  

 

true or false  

 

LOGICAL*8 

 

same as INTEGER  

 

true or false  

 

   

BYTE 

 

2's complement  

 

-128 to 127  

 

   

REAL 

 

Single-precision floating point  

 

10-37 to 1038 (1)  

 

REAL*4 

 

Single-precision floating point  

 

10-37 to 1038 (1)  

 

REAL*8 

 

Double-precision floating point 

 

10-307 to 10308 (1)  

 

DOUBLE PRECISION Double-precision floating point 10-307 to 10308 (1)  



 

   

COMPLEX 

 

See REAL  

 

See REAL  

 

DOUBLE COMPLEX  

 

See DOUBLE PRECISION  

 

See DOUBLE PRECISION 

 

COMPLEX*16 

 

Same as above  

 

Same as above  

 

   

CHARACTER*n 

 

Sequence of n bytes  

 
 

(1) Approximate value.  

From this table we notice that Fortran doesn’t support bigint data type. 

1.2.4: C/C++:[51] 

Table 4: C/C++ Data Types  

Data Type  
Size 

(bytes) 
Format  Range  

unsigned char  

 

1 

 

ordinal 

 

0 to 255  

 

[signed] char  

 

1 

 

two's-complement 

integer  

 

-128 to 127  

 

unsigned short  

 

2 

 

ordinal 

 

0 to 65535  

 



 

[signed] short  

 

2 

 

two's-complement 

integer  

 

-32768 to 32767  

 

unsigned int  

 

4 

 

ordinal 

 

0 to 232 -1  

 

[signed] int 

[signed] long int  

 

4 

 

two's-complement 

integer  

 

-231 to 231-1  

 

unsigned long int  

 

4 

 

ordinal 

 

0 to 232-1  

 

[signed] long long 

[int]  

 

8 

 

two's-complement 

integer  

 

-263 to 263-1  

 

unsigned long long 

[int]  

 

8 

 

ordinal 

 

0 to 264-1  

 

Float 

 

4 

 

IEEE single-precision  

floating-point  

 

10-37 to 1038 (1)  

 

double 

 

8 

 

IEEE double-precision 

floating-point  

 

10-307 to 10308 (1)  

 

long double  

 

8 

 

IEEE double-precision 

floating-point  

 

10-307 to 10308 (1)  

 

bit field(2)  1 to 32 ordinal 0 to 2size-1, where size is the number 



 

(unsigned value) 

 

bits  

 

 of bits in the bit field  

 

bit field(2)  

(signed value)  

 

1 to 32 

bits  

 

two's complement 

integer  

 

-2size-1 to 2size-1-1, where size is the 

number of bits in the bit field  

 

pointer 

 

4 

 

address 

 

0 to 232-1  

 

Enum 

 

4 

 

two's complement 

integer  

 

-231 to 231-1  

 

(1) Approximate value. 

(2) Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need 

not be a multiple of 8 bits (1 byte). 

From this table we notice that C/C++ doesn’t support bigint data type. 

1.2.5: Pascal:[40] 

Table 5: integer data types available in Pascal: 

Type Minimum Maximum Format 

Integer –2147483648 2147483647  signed 32-bit 

Cardinal 0 4294967295  unsigned 32-bit 

Shortint –128 127 signed 8-bit 

Smallint –32768 32767 signed 16-bit 

Longint –2147483648 2147483647 signed 32-bit 

Int64 –2^63 2^63–1 signed 64-bit 

Byte 0 255 unsigned 8-bit 

Word 0 65535 unsigned 16-bit 



 

Longword 0 4294967295 unsigned 32-bit 

1.2.6: Delphi:[37] 

Delphi provides many different data types for storing numbers. Your 

choice depends on the data you want to handle. Our attention  is on integer data 

type, table below demonstrate the integer data type available in Delphi 

language. 

Table 6: Integer data type in Delphi: 

Byte 0 to 255 

ShortInt -127 to 127 

Word 0 to 65,535 

SmallInt -32,768 to 32,767 

LongWord 0 to 4,294,967,295 

Cardinal 0 to 4,294,967,295 

LongInt -2,147,483,648 to 2,147,483,647 

Integer -2,147,483,648 to 2,147,483,647 

Int64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807   

1.2.7: Visual Basic 6 and Visual Basic .NET: 

Integer variables are stored as signed 32-bit (4-byte) integers ranging in 

value from -2,147,483,648 through 2,147,483,647.[19] 

The Integer data type provides optimal performance on a 32-bit 

processor, as the smaller integral types are slower to load and store from and to 

memory.[19] 

You can convert the Integer data type to Long, Single, Double, or 

Decimal without encountering a System. Overflow Exception error.[19] 

Visual Basic 6 dose not support bigint data type  



 

The numeric data types supplied by Visual Basic 6 are: [22] 

 Byte  

 Integer  

 Long  

 Single  

 Double  

 Currency  

 Decimal 

The numeric variables supported by VB .NET are: [22] 

 Byte (System.Int)  

 Short (System.Int16)  

 Integer (System.Int32)  

 Long (System.Int64)  

 Single (System.Single)  

 Double (System.Double)  

 Decimal (System.Decimal)  

1.2.8: C#:[36] 
Data Types and Variables are the core part of C# programming 

language. It represents how to express numbers, characters, strings and other 

values in real code. 

Different Types of Data Types 

  The .NET Framework provides lot of data types which you can use for 

developing applications. Since these data types are provided by the Common 

Language Runtime (CLR), all .NET languages such as C#, Visual Basic .NET 

can take advantage of them. A complete list of all data types and  

its range values are given in Table 1. 

 

 

 

 



 

Table 7: List of Data Types  
 

Data Type 

Prefix 

.NET Data 

Type 
Min Value Max Value 

Sbyte System.Sbyte -128 127 

Byte System.Byte 0 255 

Short System.Int16 -32,768 32,767 

Ushort System.UInt16 0 65,535 

Int System.Int32 -2,147,483,648 2,147,483,647 

Uint System.UInt32 0 4,294,967,295 

Long System.Int64 -9,223372,036,854,775,808 9,223372,036,854,775,808 

Ulong System.UInt64 0 18,446,744,073,709,551,615 

Char System.Char 0 65,535 

Float System.Single 1.5 x 10-45 3.4 x 10 38 

Double System.Double 5.0 x 10-324 1.7 x 1010308 

Bool System.Boolean False (0) True (1) 

Decimal System.Decimal 1.0 x 10-28 7.9 x 1028 

1.2.9: MATLAB: 

The most common numeric data types in MATLAB include 8, 16, 32, 

and 64 bits in length, signed and unsigned integers, and single- and double 

numbers. Enables you to manipulate integer quantities in a memory efficient 

manner. [14] 



 

Chapter Two 

Designing bigint class and overloading 

operators 
Introduction: 
 

In this chapter we will describe the need for the new data type (bigint), 

the storage structure we used to represent bigint, defining big integer numbers, 

the designing of bigint class and the overloading and dealing with the basic 

arithmetic and relational operations for multiple-precision integers. 

 

2.1: The need of large integer: 

The integer basic data type provided by the C/C++ language to represent 

integers has many limitations: It is limited in the smallest and largest integer 

that it can represent, as well as we know that computers are powerful, but they 

are not infinitely precise in their calculations. For example, the computers 

cannot represent the integer numbers with more than about 20 digits in them. 

This is an other limitation of the computer hardware, so if we want to do a 

simple arithmetic operation, say multiplication of two numbers each of them of 

30 digits, we are in trouble. [55] 

Actually, the need to represent big numbers exactly (and big integers, in 

particular) also arises in computer security. Modern techniques of cryptography 

rely on the ability to determine very large integers (integers with hundreds of 

digits), and approximations just won't work in this case. Here, we need 

arbitrary-precision arithmetic. 

 



 

This is just a fancy term meaning exact arithmetic for numbers of any 

size. For this project, we had created a C++ class that represents just such 

arbitrarily sized numbers. We'll call this class or this type of number a bigint 

(for big integer).  

The new data type allows a programmer to declare and use integers of 

arbitrary length. We could support the basic arithmetic operations and 

relational operations of this data type. We could also be able to read and write 

bigint variables from and to stdin and stdout respectively.  

A programmer should be able to use bigint in a C++ program just like 

the type int as we will see.  

The data type bigint is important to do a multiple precision arithmetic 

routines written in C++ to carry out the usual large natural number calculations 

required in cryptography calculations. 
 

2.2: Linked List: [9] 
A linked list is an algorithm for storing a list of items. It is made of any 

number of pieces of memory (nodes) and each node contains whatever data you 

are storing along with a pointer (a link) to another node. By locating the node 

referenced by that pointer and then doing the same with the pointer in that new 

node and so on. You can traverse the entire list. 

Because a linked list stores a list of items, it has some similarities to an 

array. But the two are implemented quite differently. Any array is a single 

piece of memory while a linked list contains as many pieces of memory as 

there are items in the list. Obviously, if your links get messed up, you not only 

lose part of the list, but you will lose any reference to those items no longer 

included in the list (unless you store another pointer to those items 

somewhere). 

 



 

Some advantages that a linked list has over an array are that you can 

quickly insert and delete items in a linked list. Inserting and deleting items in 

an array requires you to either make room for new items or fill the "hole" left 

by deleting an item. With a linked list, you simply rearrange those pointers that 

are affected by the change. Linked lists also allow you to have different –sized 

nodes in the list. Some disadvantages to linked lists include that they are quite 

difficult to store. Also, you cannot immediately locate, say, the hundredth 

element in a linked list the way you can in an array. Instead, you must traverse 

the list until you've found the hundredth element. 

A linked list like I've describe above, where each item has a pointer to 

the next item in the list, is called singly linked list. To implement this list, you 

would also want to store a pointer to the first item in the list (the head), which 

you would use to access the other items. However, some operations are 

awkward with a singly linked list. For example, to remove an item, you may 

need to traverse the entire list to locate the item that came before the item you 

are removing in order to modify its NEXT pointer. For this reason, many 

linked lists are implemented as a doubly linked list. In a doubly linked list, each 

item contains a pointer to both the next and the previous item in the list. 

Because you may want to traverse the list in reverse order, you would probably 

want to store the last item in the list (the tail) in addition to the first item.  

2.3: Defining numbers: 

We used double-linked lists to implement integers of unlimited size. We 

would implement integers, and the arithmetic operators we used to implement 

our big integers are addition, subtraction, multiplication, division and 

modulation we could also implement the relational operator >, <, <=, <=, ==, ! 

=. The program stored the integer three digits per node. 

When you enter your number you should tack in your account that it is of 

base 1000 that is mean there are three digits at each node and if you entered 

one digit or two digits then the remainder digits will be of zeros.  



 

The blocks of your number should be separated by space, for example, if 

you want to read the number 123456789, you should follow the following 

steps: 

1- Enter 123  

2- Enter a space 

3- Enter 456  

4- Enter space 

5- Enter 789  

6- Enter a space  

7- At the end of your number you must enter a negative number to make 

sure it is the end of the number. 

The number will appear: 123 456 789  

And if you want to enter 123004056 then: 

1- Enter 123  

2- Enter space  

3- Enter 4 

4- Enter space 

5- Enter 56  

6- Enter space 

7- Enter a negative number  

We notice that if we enter 4 or 004 it is the same because it will push zeros 

to fill the three digits. 

Radix representation: [23] 
Positive integers can be represented in various ways, the most common 

being base 10 (decimal representation). For example, a = 123 base 10 means  

a = 1*102+2*101+3*100. 



 

For machine computations, base 2 (binary representation) is preferable. 

If a = 1111011 base 2, then a = 26 + 25 +24 + 23 + 0 * 22 + 21 + 20. 

In general, if b is the base (radix), we write a number in the numeral 

system of base (radix) b by expressing it in the form  

a1bk + a2bk-1 + a3bk-2 + ... + ak+1b0 and writing the digits (a1a2a3 ... ak+1) in 

order. The digits are natural numbers between 0 and b-1, inclusive. 

 

The new data type used radix b, where b is equal to 1000 if a=123 456 

789, then a=123*10002 + 456 * 10001 + 789 * 10000 

 

2.4: Designing A bigint Class: 
Here are some concepts we should know them when designing our class. 

2.4.1: Class Fundamentals: [41] 
A class defines a new data type. Or rather, redefines an old data type 

(the struct). It is a set of variables and functions that can be accessed by the 

other variables and functions within that class. Within a class declaration, there 

are usually private members and public members. Members of a class 

declaration are private by default, but the keyword public can be used to make 

members available for use by the program outside of the class in which they are 

declared. Private members are those that can only be accessed by other 

members of that class.  

A class declaration is similar to the declaration of a struct. It creates a 

new data type. This data type can then be used to instantiate objects. Each 

instance of an object in a class-created data type has its own copy of the 

variables and functions declared by that class.  

2.4.2: Friend Functions: [41] 

There may come a time when you have a single function that must work 

with two different classes of data. When this occurs, that function can be made 



 

a friend of each of those two classes. A friend function is not a member of a 

class, but it has access to the private parts of the class to which it has been 

declared a friend. A function is declared a friend of a class in the public part of 

the class declaration and is preceded by friend. A friend of a class can access 

the members of that class directly. 

 

2.4.3: Steps to designing bigint class:  
The first step in designing a class for computing with large integers is to 

select a storage structure to represent these integers. 

A linked list seems appropriate because the number of digits in these 

integers may vary considerably. And because it is necessary to traverse this list 

in both directions, we would probably use a doubly linked list. 

Each integer to be processed will be stored in a separate list, with each 

node storing a block of consecutive digits in the number. 

Since the standard list type provides iterates and a wealth of list 

operations that are much easier to use than rudimentary pointer operations, we 

will use it instead, so we will use a list <short int > data member in bigint to 

store its digits.  

 

2.5: Overloading Operators and algorithms describe 

the basic arithmetic and relational operations: 
 

In this section we will describe overloading operators we used in our 

new class, the stream operators, the relational operations and the basic 

arithmetic operations.  

The stream operators mean input and output numbers. The relational 

operations include: less than, greater than, less than or equal, greater than or 

equal, equal to and not equal. 



 

The arithmetic operations include: addition, subtraction, multiplication, 

division and modulation. 

 

2.5.1: Overloading Operators: 
Operator overloading is the ability for a language to redefine the way its 

operators behave for certain objects. It allows the programmer to extend the 

language and give it new abilities. Some languages such as C++, Algol, python 

and ruby allow operator overloading, and others such as Java deliberately leave 

it out. Operator overloading is a controversial subject for some thing that you 

can do with operator overloading, can also be accomplished by using 

appropriate functions and method calls. On the other hand, it may make your 

code easier to read and comprehend. It also enables the STL library to work 

elegantly. [16] 

As it happens, C++ is a language that has a lot of operators. In the 

following lines, we will examine how to overload different operator types. As 

we will see later on, it is not necessary to overload all operators for a class, just 

the ones that we think should be overloaded. Also, C++ has some code in the 

standard library that reduces the amount of code that we need to write. [16] 

In order to overload an operator we must write functions. The name of 

the function that overloads an operator is the reserved word operator followed 

by the operator to be overloaded. Operators are defined as either member 

functions or friend functions.  

Here are the operators we needed in our class. 

2.5.1.1: Stream Operators: 

2.5.1.1.1: Input operator (>>): 
It is the first operation we need it, suppose for convenience that a long 

integer will be entered in three digit blocks separated by blank. For a bigint 

variable number, the input operation must read these blocks and attach a node 

containing the value of each of these blocks to number. [13] 



 

 Suppose that we want to input a number which consist of four blocks 

and the first three blocks had been read and stored, when the fourth block read 

a new node must be created for it and attached to the end of the list by setting 

the back ward link in this new node to point to the last node in the list, its 

forward link to point to the head node and then setting the forward link in the 

last node and the backward link in the last head node to point to this new 

node.[13] 

 This exactly what the push_back() operation for a list will do. So, 

operator>>() need only repeatedly read blocks and push them onto the end of 

number. [13] 

 To enter our large integer number we should enter it in three digits 

separated by space and enter a negative integer in the last block. 

Here is the algorithm: 

       1- Enter the first block (The first block determine wither the number  

is negative number or positive number). 

2- Start an infinite loop. 

3- Enter block. 

4- If block (unless the fist block because it may a negative integer) 

less than zero it will return the blocks that had been entered. 

5- If block greater than 999, it will reject this block and display an 

error message. 

6- If block greater than zero and less than 999, pushed at the end of 

the list that's represent the number. 

This will be repeated until the user enters a negative number. 

 

2.5.1.1.2: Output operator (<<): 
An output operator is simply traverse the list from left to right, 

displaying the block of digits stored in each node, this can easily be done using 

a list<short int> iterator, its dereferencing and increment operations. [13]  

 



 

The algorithm is: 

1- Move inside a list that represents the number using an iterator from 

left to right. 

2- Display three digit blocks that's stored in each node using setw(3). 

3- Separate each block with space. 

4- If the block reaches the end of line then, it will enter in a new line. 

2.5.1.2: Relational Operators: 
There are various kinds of relational operators should be overloaded to 

make comparison between numbers. 

2.5.1.2.1: Equal operators: 
 There are two kinds which differ in parameters types: 

1- The first assignment operator:  consist of two parameters, first parameter of 

type bigint and the second of type integer. When the two parameter passed, 

it must traverse the list that represent first parameter from left to right, 

compare with the second parameter, if it is equal it will return true else it 

will return false. 

2- The second assignment operator: consist of two parameters of type bigint, 

it must traverse the lists that representing these two numbers from left to 

right, compare the two three digit integers with the corresponding nodes, if 

it is equal move to the next node by using the increment operation and 

repeat this comparison until reach to the end of lists and if all are equal 

then return true, else return false. 

This will be done if the size of two numbers is the same, if the size of 

number1 differs from the size of number2 it will return false. 

 

The explanation of an algorithm: 

I.I- if the first parameter of type bigint and the second of type integer: 

 1- Traverse the list that representing first parameter from left to  

    right using while loop. 

2- Compare each node with second parameter. 



 

3- If it is equal return true. 

4- If it is not equal return false. 

5- Move to the next node using an increment operator. 

 

I.II- If both parameters are of type bigint: 

 1- If the size of number1 equal the size of number2 return  

     false. 

 2- If the size of two numbers is equal then it will traverse  

      the lists that's represent two number from left to right. 

3- If node in number1 = corresponding node in number2, move to  

    the next node using an increment operator. 

4- If all corresponding nodes are equal, return true else return false. 

2.5.1.2.2: Not equal operator: 
It is the same as equal operator but instead of equal it could be not equal. 

2.5.1.2.3: Greater Than and Less Than operators: 
 They are the same as equal operator, they have two kinds of parameters 

differ in its type. 

1- The first kind: the type of the first parameter is bigint and the second 

one is integer, it should move on the list that represent first parameter 

(of type bigint) from left to right and if all nodes in number1 is greater 

than number2 (which is a second parameter) it will return true, else it 

will return false. 

2- The second kind:  the type of each parameter is bigint, if the size of 

number1 is greater (less) than the size of number2 it will return true else 

it will return false. If the two number has the same size , it must traverse 

the lists representing these two number from left to right, if the first 

node in number1 is greater (less) than corresponding node in number2 it 

will return true and stop loop, and if node in number1 is equal to 

corresponding node in number2 it will move to the next node by using 

the increment operator and continue the comparison, if node in number1 



 

greater (less) than corresponding node in number2 it will return true and 

stop loop and if they are equal it will continue the comparison until 

reach to the end of list ,else it will return false. 

 

Algorithm of Greater (less) than operators: 
They are also have two kinds differ in it's type: 

II.I- The type of first parameter is bigint and the second of type integer. 

1- Move on the list of the first parameter from left to right. 

2- If nodes in the first parameter greater than the second one, return 

true. 

3- If not, return false. 

 

II.II- The type of each parameter is bigint: 

1- If the size of both parameter are equal, traverse two list from   

     left to right. 

2- If the first node in number1 greater (less) than corresponding   

node in number2 ,return true and stop loop. 

3- If the previous step return false, check if node in number1 equal to 

the corresponding node in number2. 

4- If true then move to next nodes in each number and go to step 2.  

5- If not then return false. 

6- If size of number1 greater (less) than size of number2, return true 

else return false. 

2.5.1.3:  Arithmetic operators: 
We will describe the algorithms for performing the basic arithmetic 

operations: addition, subtraction, multiplication, division and modulation of 

two n-digit integers a=(an-1an-2….a1a0)r and b=(bn-1bn-2….b1b0)r with integers in 

base r notation where r=1000. 

The initial digits of zeros are added in both addition and subtraction 

operations  to make both expansions the same length .We will traverse lists of 



 

two number from right to left in addition, subtraction and multiplication 

operations. 

Here is the discussion of the basic five arithmetic operations and its 

algorithm.  

2.5.1.3.1: Addition:  
The first arithmetic operation is the addition of two long integers. It 

should take two extended precision integers as input and return a third extended 

precision integer that is the sum of the two. 

It must traverse the lists representing these two numbers from right to 

left, adding the two three digit integers in corresponding nodes and the carry 

digit from the preceding nodes to obtain a three digit sum and a carry digit. A 

node is created to store this three digit sum and is attached at the front of the 

list representing the sum of the two numbers. 

 In the definition of operator+(), we have two numbers, number1 and 

number2 stored in a separate list, they are traverse from right to left using 

list<short int> reverse iterators that are moved through the lists synchronously 

by using the increment operator. The carry digit and the blocks at each position 

of the iterator are added, the new carry digit and sum block are calculated and 

the sum block inserted at the front of the list in sum using list insert() operation.  

Note:   

 We mean by the term size, the number of node or blocks in the list,  

Each node contain three digit and if our number consist of 9 digits, then the 

size of this number equal 3(nodes or block) and if the number consist of 11 

digits then its size is 4 (the third digit will be filled by zero). 

 If the size of the two numbers that we apply an arithmetic operation on 

them is varying then, it must push zeros into the begging of the number which 

has small size. The result is two numbers with same size.  

Algorithm: [12] 

When we add a and b we obtain the sum:  

a + b = 




1

0

n

j
ajrj  + 





1

0

n

j
bjrj  =





1

0

n

j
 (aj+bj)rj 



 

To find the base r expansion of the a+b first note that there are integers C0 and 

S0 such that: 

a0 + b0 = C0r + S0     ,      0<=S0<r  

Because a0 and b0 are positive integers not exceeding r. 

C0 is the carry to the next place .Next we find that there are integers C1 and S1 

such that: 

 a1 + b1 + C0 = C1r + S1     ,      0<=S1<r  

Proceeding inductively, we find integers Ci and Si for 1<=i<=ni1 by: 

ai + bi + Ci-1 = Cir + Si     ,      0<=Si<r  

Finally, we let Sn = Cn-1 , since the sum of two integers with n digits has n+1 

digits when there is a carry in the place. 

We conclude that the base r expansion for the sum is a + b =(Sn-1Sn-2….S1S0)r 

 

2.5.1.3.2: Subtraction: 
 The second operation is the subtraction operation. It should take two 

nonnegative digit extended precision integers as input and return a third 

extended precision integer that is the difference of the two. You should check if 

the first integer is greater than or equal to the second before subtracting, if 

number1 less than number2, the resulting of subtraction is equal zero. 

 Subtraction operation is same as addition operation, it must traverse the 

lists representing these numbers from right to left, subtract the three digits in 

number2 from the corresponding three digit in number1, obtain a three digit 

sub or less. 

It will create a node to store this three digit sub and attached at the front 

of the list representing the sub of two numbers. 

If the three digit block in number1 is less than three digits block in 

number2, it will subtract one (which is equal 1000) from the succedent block 

and add it to the previous block then subtract from the corresponding node. 

 This is precisely what happens in the definition of operator-(), the lists 

in number1 and number2 are traverse from right to left using list<short int> 

reverse iterators that are moved through the lists synchronously by using the 



 

increment operator. The new sub block are obtained and inserted at the front of 

the list in sub using list's insert() operation . 

 

Algorithm: [12] 

Now we will turn our attention to subtraction. We consider: 

a - b = 




1

0

n

j
aj rj  - 





1

0

n

j
bj rj  = 





1

0

n

j
( aj - bj) rj 

When a > b, there are integers B0 and d0 such that: 

a0 - b0 = B0r + d0     ,      0<=d0<r  

When a0 - b0 >= 0, we have B0 = 0. Otherwise, when a0 - b0 < 0, we have B0= -1 

B0 is the borrow from the next place of the base r expansion of a. again to find 

B1 and d1 such that: 

 a1 - b1 + B0 = B1r + d1     ,      0<=d1<r  

From this equation, we see that the borrow B1 = 0 as long as a1 - b1 + B0  >= 0 

and B1 = -1 otherwise. We proceed inductively to find integers Bi and di, such 

that: 

 ai – bi + Bi-1 = Bir + di     ,      0<=di<r  

We see that Bn-1 = 0 since a > b. 

 We can conclude that: a - b = (dn-1dn-2….d1d0)r 

 

2.5.1.3.3: Multiplication: 
It should take two extended precision integers as input and return a third 

extended precision integer that is the product of the two. Observe that if 

number1 and number2 are N-digit integers, the product will have at most 2N 

digits. 

Multiplication is one of the most exciting operators, to multiply two 

long numbers, it must traverse the lists that represent these two numbers from 

right to left. So, it will need two loops to traverse the lists, the external loop 

represent the second number and the internal loop represent the first number. 

It will takes the first block in the second number and multiply by each 

block in the first number and stored the resulting in a separate row in sum 



 

(which is two dimensional array), after the internal loop finish we will add all 

rows and the summation will be stored in sum_num array. 

 We should take in account that when we multiply a blocks in number1 

by blocks in number2, it must reserve the position of each block by zero if it is 

not in the corresponding block. These operations will be repeated until the 

external loop finish. 

 Now it has sum_num, it is an array of two dimension, any row in 

sum_num represent the resulting which is the sum of multiply each block in 

number2 by all blocks in number1. All elements (cells) in an array contain 

almost three digits. 

 It will add the corresponding columns in each rows and the carry digit 

from the preceding cells to obtain three digits and a carry digit. It will create 

node to store this three digits and attached at the front of the list representing 

the multiplication of the two long numbers. 

Algorithm: 

When multiplying two integers a and b with base r expansions, we first 

multiply each digits of a by all digits of b, shifting each time by the appropriate 

number of places until reach to the final digit of a such that: 

                                     

                  a * b = a   




1

0

n

j
bj rj    = 





1

0

n

j
( a* bj) rj 

         

1- Move on two lists of two numbers using for loop. 

2- The external loop represent a. 

3- The internal loop represents b. 

4- Take first digit in b. 

5- Multiply by digit in a. 

6- Store the result in a row in an array (sum) of two dimension {recall 

that each element in the row consist of three digits}. 

7- Move to next digit in a. 



 

8- Reserve the position by zero for each digit not in the corresponding 

digit. 

9- Go to step 5 until the internal loop finish. 

10- Add all rows in sum and stored in sum_num array. 

11- Go to step 4 until the external loop finish. 

12- Add all rows in the same column. 

13- Obtain three digits and the carry digit. 

14- Store three digits in the front of list mult representing the 

multiplication of two numbers. 

 

2.5.1.3.4: Division: 
This is the forth operation, it is the most complicated of the arithmetic 

operations. The first number must be greater than the second, if it is not then 

the result is zero. There are many state her: 

1- If number1 equal zero and number2 greater than zero then the result is 

zero. 

2- If number1 greater than zero and number2 equal zero then the division is 

by zero. 

3- If number1 equal number2 equal zero then the result is unknown 

number. 

4- If number1 equal number2 then the result equal 1. 

5- If number1 less than number2 then the result equal zero. 

6- If number1 greater than number2 then the result will be obtain the result 

as the following algorithm bellow: 

Algorithm: [12] 

Here is the algorithm we use it to compute q = a / b 

     We wish to find the quotient (q) where a=bq+R,     0<=R<=b 

a, b : two long integer numbers, R: remainders,  

r: radix or base (which is equal to 1000 in our project), 

n: the size of number a (number of the node in the list a ), 

i=0 



 

1) If the base (radix) expansion of q is q = (qn-1qn-2….q1q0) r , then we have: 

      a = b  ( 


1-n

0j
qjrj  )   + R ,            0<=R<=b  

2) Determine the first digit qn-1 of q 

      a – bqn-1 rn-1 = b (  




2

0

n

j
qjrj  ) + R 

The right hand side of this equation is positive and less than brn-1    

Therefore         0 <= a- bqn-1 rn-1 < brn-1 

Thereupon        qn-1 = a / (brn-1) 

 

We can obtain qn-1 by successively subtracting brn-1 from a until   

a negative result is obtained . 

3) Find other digits of q by defining the sequence of partial remainders R by 

R0 = a  and  Ri = Ri-1 - bqn-i rn-i  

 

Consequently, since Ri = Ri-1 - bqn-i rn-i   and 0 <= Ri < rn-1b , we see that the 

digit qn-i is given by [ Ri-1 / (brn-i )] and can be obtained by successively 

subtracting brn-i from Ri-1 until a negative result is obtained , and then qn-i is one 

less than the number of subtractions. This is how we find the digits of q.        

Know we will discuss  how we will obtain the digits of the quotient (q) 

which it is in fact a subtraction operation, firstly it will check if the size of 

number1(Ri-1) greater than the size of number2 (brn-i), if yes it will fill the 

difference with zeros in the begging of number2 to obtain two number with 

same size. 

After that the subtraction operation will start using while loop and a counter 

(c). While loop here checks if number1 is greater than number2, if yes then the 

counter (c) will be increase until number1 became less than number2 and stop 

loop. 

Our program dealing with large numbers. So, the counter will be large 

as well. Inside the loop when the counter greater than (999) it will store 999 in 

the div list and make c equal to zero, whereas any node in div represent (999). 



 

It will find how many (999) in div list by using size() function. If the size is 

greater than zero that’s mean the div list contain nodes in it, and while the size 

is greater than zero it must attached three digit block to div1 list until the size 

become zero. 

Div2 will consist of one node contain (999). If the counter greater than (999) 

div3 will be calculated by multiply div1 by div2 (that is mean it will call 

multiplication operation here) and if the counter contain value less than (999) it 

will be pushed in div4 list then add it to div3 obtain div5 which represent the 

resulting of division two number2. 

If the size of div equal zero, it is mean there is no node inside it, so, the counter 

(c) will had value less than (999) and it will be stored in div5 represent the 

division of two numbers (Ri-1 and  (brn-i) ). In which to represent the digits in q. 

After obtained the first digit it will be pushed in the q1 list and repeat this 

operation until i < n, finally q1 represent the division of the two numbers. 

2.5.1.3.5: Modulation: 
It is the last operation, it seems to be like division operation, there is also 

much state we will illustrate below: - 

1- If number1 equals zero or number2 equal 1 or number1 equal 

number2 then the modulation equal zero. 

2- If number2 equal zero and number1 greater than zero, then division 

is by zero. 

3- If number1 equal number2 equal zero then the division is unknown 

value. 

4- If number1 less than number2 then modulation equal number1. 

5- If number1 greater that number2 then modulation will be obtained as 

follow: - 

It is the same as division algorithm, instead of returned q it will 

return R which is a remainder of two large integer numbers. 

 



 

Chapter Three 

Number Theory 
Introduction: 

This chapter is concerns with Number Theory, we will give an 

introduction to number theory and in the rest of this chapter we will explain 

modular arithmetic, modular exponentiation, how to obtain the greatest 

common divisor of two positive integers by using Extend Euclidean Algorithm, 

the prime number and the inverses modular.  

3.1: Introduction to Number Theory: 
Number theory is one of the oldest and largest branches of pure 

mathematics. It is that branch of pure mathematics concerned with the 

properties of integers. It contains many results and open problems that are 

easily understood, even by non-mathematicians. More generally, the field has 

come to be concerned with wider classes of problems that have arisen naturally 

from the study of integers. Number theory may be subdivided into several 

fields, according to the methods used. [29]  

Our research focuses on some basic Number Theory such like obtaining 

the GCD (Greatest Common Divisor) by using the Extended Euclid's 

Algorithm, modular arithmetic, modular exponentiation, inverses modulo, 

check if the number is prime or not.  

Many public-key encryption and digital signature schemes, and some 

hash functions require computations in Zm The set of integers {…., -3, -2, -1, 0, 

1, 2, 3, …. } is denoted by the symbol Z, the integers modulo m (m is a large 

positive integer which may or may not be a prime). For example, the RSA, 

Rabin, and ElGamal schemes require efficient methods for performing 

multiplication and exponentiation in Zm. The efficiency of any cryptographic 

scheme depend on a number of factors, such as parameter size, time-memory 



 

tradeoffs, processing power available, software and/or hardware optimization, 

and mathematical algorithms. [17] 

We know that there are a number of techniques for doing modular 

multiplication and exponentiation. Efficiency can be measured in numerous 

ways; thus, it is difficult to definitively state which algorithms the best. An 

algorithm may be efficient in the time it takes to perform a certain algebraic 

operation, but quite inefficient in the amount of storage it requires. One 

algorithm may require more code space than another. [17] 

Depending on the environment in which computations are to be performed, one 

algorithm may be preferable over another. [17] 

3.2: Modular arithmetic: 

It is an important field in Number Theory, this section gives the 

definition of modular arithmetic, its properties and applications and the 

modular exponentiation. 

3.2.1: Definition: [44] 
Modular arithmetic is interesting as an abstract topic in number theory, 

but it also plays a daily role in real life. It is the basis for public key 

cryptography and check digits associated with error detection. Here we 

describe the idea of modular arithmetic and can help us to better understand 

primes and composite numbers. 

Suppose that a, b, and n are integers, n > 0. We say that a and b are 

congruent modulo n if and only if n|(a - b). We denote this relationship as:  

    a=b (mod n) 

and read these symbols as “a is congruent to b (mod n).” 

3.2.2: Modular arithmetic properties: [33] 
Modular arithmetic is remainder arithmetic. So for instance, 7 mod 5=2 

because 5 goes into 7 once with a remainder of 2. Congruent modulo is an 



 

interesting concept and important to cryptography. a = b mod(n) says that a and 

b are congruent modulo n if a mod(n) = b mod(n). 

Furthermore, additional modulo arithmetic properties are: 

 

Reducibility 

1. (a + b) mod(n) = [(a mod(n)) + (b mod(n))] mod(n) 

2. (a - b) mod(n) = [(a mod(n)) - (b mod(n))] mod(n) 

3. (a * b) mod(n) = [(a mod(n)) * (b mod(n))] mod(n) 

Distributivity 

1. a * (b + c) mod(n) = [(a * b) + (a * c)] mod(n) 

Identities 

1. a + 0 mod(n) = a + 0 mod(n) = a 

2. a * 1 mod(n) = 1 * a mod(n) 

Inverses 

1. a + (-a) mod n = 0 

2. a * a-1 mod(n) = 1 if a not equal 0 

Additive Inverse 

The additive inverse modulo n to an integer x is y such that x+y=0 mod n. 

3.2.3: Application Of Modular Arithmetic: 
Much of modern number theory and many practical problems (including 

problems in cryptography and computer science) are concerned with modular 

arithmetic. [1] 

In arithmetic modulo N, we are concerned with arithmetic on the 

integers, where we identify all numbers which differ by an exact multiple of 

N.[1] 

That is, x = y mod N if x = y + m*N for some integer m. This 

identification divides all the integers into N equivalence classes. We usually 

denote these by their “simplest” members, that is, the numbers 0, 1, . . . , N −1. 

(Usually In the case of clock arithmetic (modulo 12), we use 1, . . . , 12 

instead). [1] 



 

Most ordinary arithmetic operations extend to modular arithmetic 

straightforwardly. [1] 

                                   x + y        x + y mod N, 

                                       xy        xy mod N, 

                                       xy        xy mod N. 

This does lead to some things, which are strange based on the intuition 

from ordinary integer arithmetic. For instance, all numbers have additive 

inverses, but these are now represented by positive numbers:  

(−x) = N −x, 

so the additive inverse of 3 modulo 7 is 4. 

And unlike ordinary arithmetic, it is possible for a non-zero integer to 

have a multiplicative inverse, as well: 3 * 5 = 15 = 1 mod 7. In fact, for prime 

N, all numbers 0, . . . ,N − 1 have multiplicative inverses. [1] 

If N is composite, then all numbers which have no common factor with N have 

multiplicative inverses. [1] 

Generally, modular exponentiation problems take the form where given 

base b, exponent e, and modulus m, one wishes to calculate c such that: 

c=be(mod m). [28] 

If b, e, and m are non-negative and b < m, then a unique solution c 

exists and has the property 0 ≤ c < m. For example, given b = 5, e = 3, and m = 

13, the solution c works out to be 8. [28] 

Modular exponentiation problems similar to the one described above are 

considered easy to do, even if the numbers involved are enormous. On the 

contrary, computing the discrete logarithm (finding b given c, e, and m) is 

believed to be difficult. This one way function behavior makes modular 

exponentiation a good candidate for use in cryptographic algorithms. [28] 

Modular Arithmetic is the basis of many important operations in 

cryptographic applications. The RSA algorithm relies on modular 

exponentiation to provide secure public key encryption and decryption. [4] 

This modular exponentiation is achieved through a combination of 

modular multiplications and squaring of the inputs. [4] 



 

By definition, modular multiplication reduces the product of two numbers 

through division by the modulus, resulting in a bounded remainder. [4] 

Modular inversion is used in applications such as the generation of 

public/private key pairs in the RSA system, the Diffie-Hellman key exchange 

algorithm and more recently in elliptic curve cryptography (ECC). Modular 

inversion can also be used to accelerate modular exponentiation in conjunction 

with addition-subtraction chains, where canonical recoding is used to reduce 

the average number of non-zero multiplications. [4] 

3.2.4: Computing Modular Exponentiation(xe mod n): 
One of the most important arithmetic operations for public-key 

cryptography is exponentiation. [17] 

The RSA scheme requires exponentiation in Zm (Z is set of integer 

numbers) for some positive integer m, whereas Diffie-Hellman key agreement 

and the ElGamal encryption scheme use exponentiation in Zp for some large 

prime p. ElGamal encryption can be generalized to any finite cyclic group. This 

section discusses methods for computing the exponential ge, where the base g is 

an element of a finite group G and the exponent e is a non-negative integer. A 

reader uncomfortable with the setting of a general group may consider G to be 

Z*
m; that is, read ge as ge mod m. [17] 

An efficient method for multiplying two elements in the group G is 

essential to performing efficient exponentiation. The most naive way to 

compute ge is to do e - 1 multiplications in the group G. For cryptographic 

applications, the order of the group G typically exceeds 2160 elements, and may 

exceed 21024. Most choices of e are large enough that it would be infeasible to 

compute ge using e - 1 successive multiplications by g. 

There are two ways to reduce the time required to do exponentiation. 

One way is to decrease the time to multiply two elements in the group; the 

other is to reduce the number of multiplications used to compute ge. Ideally, 

one would do both. [17] 

[38]The following lines consider RSMA algorithm, this is known as     

Repeated Square-and-Multiply Algorithm. Here is the RSMA algorithm: 



 

Assume the binary representation of e is bk, ……., b0. Note that  

xe = ∏k 
i=0    x bi*2i.  

The algorithm is: 

y=xb0; 

t=x; 

for i =1 to k do: 

 { t=x2i-1; y=∏i-1 
j=0  x bj*2j } 

 t=t2 mod n; if bi then y=t*y mod n 

end 

return y; 

Example. We want to find  (3429 mod 137). 

So, x = 34, e = 29, and n = 137. Thus, (b0, b1, b2, b3, b4) = (1, 0, 1, 1, 1). We 

start with y = t = 34. We then have: 

1. t = 342 mod 137 = 60. 

2. t= 602 mod 137 = 38; y = 38 * 34 mod 137 = 59. 

3. t = 382 mod 137 = 74; y = 59 * 74 mod 137 = 119. 

4. t = 3742 mod 137 = 133; y = 119 * 133 mod 137 = 72. 

The idea is to decrease the number of multiplications used to compute ge, the 

naive algorithm would compute g*g*…*g, e times, but instead it is more 

effective to compute g1*g2*g4 …because the values g2 = g*g and g4 = g2*g2 can 

be computed using fewer multiplications. An example, compute g29, this would 

require 29 multiplications to compute in a naive way, but observe that 29 = 

101112and that means that g29 = g1011112 = g29 =g14*g2*g1which require a lot 

fewer calculations.  



 

3.3: Greatest Common Divisor (GCD): 
Many situations in cryptography require the computation of the Greatest 

Common Divisor (GCD) of two positive integers. There are Algorithms 

describe the classical Euclidean algorithm for this computation. [17] 

 

[54] Firstly, we will know what do we mean by GCD? When we divide 

one integer by another (nonzero) integer we get an integer quotient (the 

"answer") plus a remainder (generally a rational number). For instance,  

13/5 = 2 ("the quotient") + 3/5 ("the remainder"). 

 

We can rephrase this division, totally in terms of integers, without 

reference to the division operation:  

13 = 2(5) + 3. 

Note that this expression is obtained from the one above it by 

multiplying through by the divisor 5.  

We refer to this way of writing a division of integers as the Division 

Algorithm for Integers. More formally stated:  

If a and b are positive integers, there exist integers unique non-negative 

integers q and r so that 

a = q*b + r , where 0<=r < b. 

q is called the quotient and r the remainder.  

The greatest common divisor of integers a and b, denoted by gcd(a, b), is the 

largest integer that divides (without remainder) both a and b. So, for example:  

gcd(15, 5) = 5, gcd(7, 9) = 1, gcd(12, 9) = 3, gcd(81, 57) = 3. 

The gcd of two integers can be found by repeated application of the 

division algorithm, this is known as the Euclidean Algorithm. You repeatedly 



 

divide the divisor by the remainder until the remainder is 0. The gcd is the last 

non-zero remainder in this algorithm. The following example shows the 

algorithm.  

Finding the gcd of 81 and 57 by the Euclidean Algorithm:  

81 = 1(57) + 24 

57 = 2(24) + 9 

24 = 2(9) + 6 

9 = 1(6) + 3 

6 = 2(3) + 0.  

It is well known that if the gcd(a, b) = r then there exist integers p and s so that:  

p(a) + s(b) = r. [54] 

There are variant methods for computing the gcd which are more efficient. 

Let a, b be integers not both zero. A positive integer d is the greatest common 

divisor of a and b if  

(i) d/a and  d/b; 

(ii) c/a and c/b  c/d 

We write d=(a, b) if (a, b) =1, we say that a and b are relatively prime.[17] 

The greatest common divisor of two integers a and b can be computed via 

various algorithm. 

However, computing a gcd by first obtaining prime-power factorizations 

does not result in an efficient algorithm, as the problem of factoring integers 

appears to be relatively difficult. The Euclidean algorithm is an efficient 

algorithm for computing the greatest common divisor of two integers that does 

not require the factorization of the integers. It is based on the following simple 

fact. 

If a and b are positive integers with a > b, then gcd(a, b) = gcd(b, a mod b). 17] 



 

3.3.1: Euclidean algorithm for computing the greatest 

common divisor of two integers:[17] 
INPUT: two non-negative integers a and b with a >= b. 

OUTPUT: the greatest common divisor of a and b. 

1. While b != 0 do the following: 

    1.1 Set r = a mod b 

    1.2 a = b 

    1.3 b = r 

2. Return(a). 

Example (Euclidean algorithm) The following are the division steps of the 

pervious Algorithm: 

For computing gcd(4864, 3458) = 38: 

4864 = 1*3458 + 1406 

3458 = 2*1406 + 646 

1406 = 2*646 + 114 

646 = 5*114 + 76 

114 = 1*76 + 38 

76 = 2*38 + 0 

The Euclidean algorithm can be extended so that it not only yields the greatest 

common divisor d of two integers a and b, but also integers x and y satisfying 

ax + by = d. 

 



 

3.3.2: Extended Euclidean algorithm:[17] 
INPUT: two non-negative integers a and b with a>=b. 

OUTPUT: d = gcd(a; b) and integers x, y satisfying ax + by = d. 

1. If b = 0 then: 

    set d = a 

          x =1 

          y = 0 

       return(d,x,y). 

2. Set x2 =1 

          x1 = 0 

          y2 = 0 

          y1 = 1 

3. While b > 0 do the following: 

     3.1 q = [a/b] 

           r = a – q*b 

           x = x2 – q*x1 

           y = y2 – q*y1 

     3.2 a=b 

           b=r 

           x2=x1 

           x1=x 

           y2=y1 

           y1=y 

4. Set d = a 

          x = x2 

          y = y2 

       return(d,x,y). 

 



 

Table 8 shows the steps of the previous Algorithm with inputs a = 4864 and b = 

3458. 

Hence gcd(4864, 3458) = 38 and (4864)(32) +(3458)(-45) = 38.  

Table 8: Example to get the GCD by using the Extend Euclidean Algorithm: 

Q r X Y a B X2 X1 Y1 Y2 

- - - - 4864 3458 1 0 0 1 

1 1406 1 -1 3458 1406 0 1 1 -1 

2 646 -2 3 1406 646 1 -2 -1 3 

2 114 5 -7 646 114 -2 5 3 -7 

5 76 -27 38 114 76 5 -27 -7 38 

1 38 32 -45 76 38 -27 32 38 -45 

2 0 -91 128 38 0 32 -91 -45 128 

4.4: Prime Number: 

A prime number is a number which has no divisors other than 1 and the 

number itself. 

Thus, 13 is a prime but 12 is not, it has divisors 2, 3, and 6. A number 

which is not prime is said to be composite. 

In modern cryptography, we normally use special mathematical tools for 

generating prime numbers - as we will see in the next chapter -. Naturally, we 

want to convince ourselves that the generated number is prime. [34] 

Did you ever stop to wonder if 473155932665450549 was prime?  

Proving this is somewhat difficult, so we turn the question up-side 

down, and convince ourselves probabilistically that we are dealing with a 

prime. If the test succeeds you are dealing with a prime (with extremely high 

probability). If the test fails, you can be certain that you are not dealing with a 

prime. [34] 



 

3.4.1: Relatively prime: [21] 
Two integers are relatively prime if there is no integer greater than one 

that divides them both (that is, their greatest common divisor is one). For 

example, 12 and 13 are relatively prime, but 12 and 14 are not.  

A list of integers is (mutually) relatively prime if there is no integer 

that divides them all. For example, the integers 30, 42, 70, and 105 are 

mutually relatively prime (but not pair wise relatively prime).  

3.4.2: Pseudoprime:[30] 
A pseudoprime is a composite number that passes a test or sequence of 

tests that fail for most composite numbers. Unfortunately, some authors drop 

the "composite" requirement, calling any number that passes the specified tests 

a pseudoprime even if it is prime.  

A pseudoprime is a probable prime (an integer which shares a property 

common to all prime numbers) which is not actually prime. Pseudoprimes can 

be classified according to which property they satisfy. 

The most important class of pseudoprimes come from Fermat's little 

theorem and hence are called Fermat pseudoprimes. This theorem states that 

if p is prime and a is coprime to p, then ap-1 - 1 is divisible by p. If a number x 

is not prime, a is coprime to x and x divides ax-1 - 1, then x is called a 

pseudoprime to base a. A number x that is a pseudoprime for all values of a 

that are coprime to x is called a Carmichael number. 

3.4.3: Coprime: [5] 

In mathematics, the integers a and b are said to be coprime or relatively 

prime if and only if they have no common factor other than 1 and −1, or 

equivalently, if their greatest common divisor is 1. 



 

For example, 6 and 35 are coprime, but 6 and 27 are not because they 

are both divisible by 3. The number 1 is coprime to every integer; 0 is coprime 

only to 1 and −1. 

A fast way to determine whether two numbers are coprime is given by the 

Euclidean algorithm. 

Properties of coprime: 

The numbers a and b are coprime if and only if there exist integers x and 

y such that ax + by = 1. Equivalently, b has a multiplicative inverse modulo a: 

there exists an integer y such that by ≡ 1 (mod a).  

As a consequence, if a and b are coprime and br ≡ bs (mod a), then r ≡ s 

(mod a) [because we may "divide by b" when working modulo a]. 

Furthermore, if a and b1 are coprime, and a and b2 are coprime, then a and b1b2 

are also coprime [because the product of units is a unit]. 

If a and b are coprime and a divides a product bc, then a divides c. 

The probability that two randomly chosen integers are coprime is 6/π2.  

3.4.4: Primality Tests: 
A primality test is an algorithm for determining whether an input 

number is prime or not. 

A primality test is a criterion for a number n not to be prime, thus if n 

"fails" the test that’s mean n is definitely composite, if n "passes" the test that's 

mean n may be prime, and if n "passes" many tests this mean n is very likely 

prime. [45]   

There are too many methods to test if our number is prime or not we 

will explain a few methods and apply one of them in our project. 



 

3.4.4.1: Method 1: Naive Method: [24] 

This is a simplest primality test, it is as follows: Given an input number 

n, we see if any integer k from 2 to n-1 divides n. If n is divisible by any k then 

n is composite, otherwise it is prime. 

A slightly better method is to see if n is divisible by any integer k from 2 

to n , inclusive. If n is composite then it can be factored into two values, at 

least one of which is less than or equal to n .  

Briefly, This method test for some/all m <= n  whether m|n. 

3.4.4.2:Method 2: Fermat Test:[26] 

The Fermat primality test is a probabalistic test to determine if a 

number is composite or probably prime. 

Fermat's little theorem states that if n is prime and 1bn, then 

bn - 1≡1(mod n). 

If we want to test if n is prime, then we can pick random b's in the 

interval and see if the equality holds. If the equality does not hold for a value of 

b, then n is composite. If the equality does hold for many values of b, then we 

can say that n is probably prime, or a pseudoprime. 

Carmichael numbers:  

 A Carmichael number is an odd composite number n which satisfies 

Fermat's little theorem  

an-1 -1 = 0 (mod n) 

For every choice of a satisfying (a, n)=1(i.e., a and n are relatively prime) with 

1 < a < n. A Carmichael number is therefore a pseudoprime to any base. [6] 



 

We know that if a number n successfully passes the Fermat Theorem test:  

bn-1=1 mod n  

For all coprime bases 0< b < n, this does not necessary mean that n is a prime 

number. [43] 

Example. Run the above test for n=225593397919 and random bases b. I 

would be very surprised if n has ever failed the test. However, n is not a prime 

number! The explanation of the remarkable behavior of the number 

n=225593397919 is that the above condition holds for every coprime base b. 

Of course, it does not hold if the base b has with n a common prime factor. 

But, since prime factors of n are rather big, namely, the prime factorization of 

n is [43] 

225593397919=2207 * 6619 * 15443, 

a randomly chosen base is almost always coprime to n. This is why n passes 

the test again and again.  

Odd composite numbers n with the property that they are psudoprime to any 

coprime base are called Carmichael numbers. You can try the Fermat 

Theorem Test on the nastiest Carmichael number in the range      < 1016: 

 9585921133193329 

However it is relatively easy to recognize a Carmichael number. 

Theorem: If n is a product of distinct prime numbers,  

n=p1* p2 * ...* ps,  

and 

pi -1 | n-1 



 

for every prime factor pi , i=1, ..., s , then n is a Carmichael number. 

The converse is also true: every Carmichael number n has at least three prime 

factors, all its prime factors p are different and satisfy 

p-1 | n-1 . 

3.4.4.3: Method 3: Euler Test (Solovay-Strassen 

Method): [32] 

The Solovay-Strassen primality test is a probabilistic test to determine if 

a number is composite or probably prime. 

Euler ( Leonhard Euler is Swiss mathematician noted both for his work in 

analysis and algebra, including complex numbers and logarithms, and his 

introduction of much of the basic notation in mathematics) proved that for a 

prime number n, 

For b < n with gcd(b, n) =1 whether n satisfies 

b(n-1)/2 = ( n
b )(mod n) 

Thus, if we have a value n and want to determine if it is prime, we can check 

many random values of b and make sure the above equality holds. If it does not 

hold for some a, we know that p must not be prime. 

Therefore, n is an Euler pseudoprime to the base b. when n passes K tests this 

mean the probability of n to be composite <=1/2k.    

3.4.4.4: Method 4: Miller-Rabin Test: [27] 

The Miller-Rabin primality test is a primality test: an algorithm which 

determines whether a given number is prime, similar to the Fermat primality 

test and the Solovay-Strassen primality test. Its original version, due to G. L. 

Miller, is deterministic, but it relies on the unproven generalized Riemann 



 

hypothesis; M. O. Rabin modified it to obtain an unconditional probabilistic 

algorithm. 

Just like with the Fermat and Solovay-Strassen tests, with the Miller-Rabin test 

we will rely on an equality or set of equalities that hold true for prime values, 

and then see whether or not they hold for a number that we want to test for 

primality.     

Let n be an odd prime, then we can write n − 1 as 2s × d, where s is an integer 

and d is odd, this is the same as factoring out 2 from n repeatedly. Then, one of 

the following must be true for some : 

ad≡1(mod n) 

or  

for some  

To show that one of these must be true, recall Fermat's little theorem: 

an - 1≡1(mod n)  

So, if we keep taking square roots of an − 1, we will either get 1 or −1. If we get 

−1 then the second equality holds and we are done. 

In the case when we've taken out every power of 2 and the second equality 

never held, we are left with the first equality which also must be equal to 1 or 

−1, as it too is a square root. However, if the second equality never held, then it 

couldn't have held for r = 0, meaning that 

 

Thus in the case the second equality doesn't hold, the first equality must. 



 

The Miller-Rabin primality test is based on the above equalities. If we want to 

test to see if n is prime, then if 

 

and 

for all  

then a is called a strong witness for the compositeness of n. Otherwise a is 

called a strong liar and n is a probable prime. 

3.4.5: Algorithm  for Miller-Rabin primality test[8] 

The input value is n to test for primality and the output is composite or prime. 

The algorithm can be written as follows: 

1- Select x   R {1, . . . . . , n-1} 

2- Compute gcd (x, n) = d , if d   1 then return “composite” , (observe 

that when gcd (x, n)  =1 , x   R Z+
n )  

3- Write n-1 = m * 2k  where m is odd  

4- If  xm = 1 (mod n) then return “prime”   

5- For i =  0  To  k-1  Do 

 If    then return “prime” else return 

“composite” . 

If n passes K tests, then the probability of n to be composite <=1/4k 

3.4.6: Proving Primality: 
In fact, verifying that a large number is prime can be difficult. There are 

many methods as shown above that ensure it is highly probable the n is prime, 

but do not provide a guarantee. 



 

In our project, we would generate random large integers and try to prove 

they are prime by using Miller-Rabin primality test. 

3.5: Inverse Modulo: 
Modular inversion is used in many applications such as the generation 

of public/private key pairs in the RSA system (it will be discuss in the next 

chapter), the Diffe-Hellman key exchange algorithm and more recently in 

elliptic curve cryptography (ECC). Modular inversion can also be used to 

accelerate modular exponentiation in conjunction with addition-subtraction 

chains, where canonical recoding is used to reduce the average number of non-

zero multiplications.[41] 

A modular inverse of an integer b (modulo m) is the integer b-1 such that 

b-1 = 1 (mod m) 

Every nonzero integer b has an inverse (modulo p) for p a prime and b 

not a multiple of p. For example, the modular inverses of 1, 2, 3, and 4 (mod 5) 

are 1, 3, 2, and 4.  

If m is not prime, then not every nonzero integer b has a modular 

inverse. For example,1-1 = 1 (mod 4) and 3-1 = 3 (mod 4), but 2 does not have a 

modular inverse. [7] 

The Modular inverse of an integer a [1,M-1] modulo a prime M is 

defined as the integer x, such that: 

a * x = 1 ( mod M ) 

which can be written:  

x := ModInv ( a ) = a-1 ( mod M ) 

Note that the multiplicative inverse of an integer a (mod M) exists if, and  only 

if, a and M are relatively prime. [4] 

Example: [52] 

Let: Zn = {0, 1, 2, …, n-1} 



 

Let: Z*
n = {x  Zn | gcd(x, n) = 1} 

Z15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 

Z*
15 = {1, 2, 4, 7, 8, 11, 13, 14} 

Z6 = {0, 1, 2, 3, 4, 5} 

Z*
6 = {1, 5} 

Fact: Z*n is the set of all elements in Zn that have a multiplicative inverse. 

Proof: 

If gcd(x, n) = 1, then there are a, b : 

ax + bn = 1 

 ax = 1 (mod n) 

 a is a multiplicative inverse of x 

Modular multiplication of a and b may be accomplished by simply multiplying 

a and b as integers, and then taking the remainder of the result after division by 

n. Inverses in Zn can be computed using the extended Euclidean algorithm as 

next described. [17] 

Algorithm Computing multiplicative inverses in Zn 

INPUT: a  Zn. 

OUTPUT: a-1 mod n, provided that it exists. 

1. Use the Extended Euclidean algorithm to find integers x and y such that:    

ax + ny = d, where d = gcd(a, n). 

2. If d > 1, then a-1 mod n does not exist. Otherwise,  return(x). [17] 

3.5.1: The Extended Euclidean Algorithm & Modular 

Inverses: [49] 

The Extended Euclidean algorithm not only computes gcd(n, m), but 

also returns the numbers a and b such that gcd(n, m)=a*n + b*m. If gcd(n, 

m)=1 this solves the problem of computing modular inverses. 

Assume that we want to compute n(-1)(mod m) and further assume that 

gcd(n, m)=1. Run the Extended Euclidean algorithm to get a and b such that 



 

a*n + b*m=1. Rearranging this result, we see that a*n=1-b*m, or a*n=1(mod 

m). This solves the problem of finding the modular inverse of n, as this shows 

that n(-1)=a(mod m). 

The Extended Euclidean algorithm is nothing more than the usual Euclidean 

algorithm, with side computations to keep careful track of what combination of 

the original numbers n and m have been added at each step. The algorithm runs 

generally like this: 

1. Write down n, m, and the two vectors (1,0) and (0,1)  

2. Divide the larger of the two numbers by the smaller call this quotient q  

3. Subtract q times the smaller from the larger (i.e. reduce the larger 

modulo the smaller)  

4. Subtract q times the vector corresponding to the smaller from the vector 

corresponding to the larger  

5. Repeat steps 2 through 4 until the result is zero  

6. Publish the preceding result as gcd(n, m)  

An example of this algorithm is the following computation of 30(-1)(mod 53): 

53               30              (1,0)                                                      (0,1) 

53-1*30=23           30                          (1,0)-1*(0,1)=(1,-1)                           (0,1) 

23                             30-1*23=7           (1,-1)                         (0,1)-1*(1,-1)=(1,2) 

23-3*7=2                7                            (1,-1)-3*(1,2)=(-2,-7)                       (1,2) 

2                                7-3*2=1              (-2,-7)                     (1,2)-3*(-2,7)=(7,23) 

2-2*1=0                  1                            (-2,-7)-2*(7,23)=(-16,-53)              (7,23) 

      From this we see that gcd(30,53)=1 and, rearranging terms, we see that 

1=7*53+23*30, so we conclude that 30(-1)=23(mod 53). (This can be confirmed 

by checking that 23*30 = 1(mod 53)). 

3.5.2: Extended Euclidean Algorithm [53] 
The Extended Euclidean Algorithm determines, if present, the inverse of b 

modulo n: 



 

1. b0 = b 

2. n0 = n 

3. t0 = 0 

4. t = 1 

5. Q = n0 / b0  

6. r = n0 - q * b0 

7. while r > 0 do 

8.       temp = t0 - q * t 

9.  if temp >= 0 then temp = temp mod n 

10.  if temp < 0 then temp = n - (( -temp) mod n) 

11.  t0 = t 

12.  t = temp 

13.  n0 = b0 

14.  b0 = r 

15.  q = n0 / b0  

16.  r = n0 - q * b0 

17. if b0 != 1 then 

  b has no inverse modulo n 

 else  

  b-1 = t mod n 

 



 

Chapter four 

RSA Public Key Cryptosystem 
 

Introduction: 
This chapter explains our implementation which is the RSA public-key 

cryptosystem.  

We will apply our new data type (bigint) in RSA public key 

cryptosystem and ensure that it is act as any data type define in any computer 

language and given a high level of security by generating a very large number. 

This chapter consists of the following subjects an explanation of a 

Cryptology, Cryptography, Cryptanalysis and other terminology related to 

Cryptology, types of cryptosystems, public key cryptosystem and the RSA 

public key cryptosystem. 

 

4.1: Cryptology: 

Here an explanation of various terminologies related to cryptology. 

4.1.1: Cryptography: 
The story begins: When Julius Caesar sent messages to his trusted 

acquaintances, he didn't trust the messengers. So he replaced every A by a D, 

every B by a E, and so on through the alphabet. Only someone who knew the 

"shift by 3" rule could decipher his messages. [3] 

Cryptography refers to the creation and use of systems for disguising messages 

so that only the intended party can read the message contents. Of fundamental 

importance in cryptography is the idea of algorithmic complexity, that is, how 

hard it is to perform certain operations where "hard" is directly related to how 

long it takes to solve the problem. All successful cryptosystems rely on it being 



 

hard to decrypt the encrypted message without knowledge of some secret piece 

of information - that is, it must take longer than anyone is willing to wait in 

order to 'break' the system and guess the secret needed to recover the original 

message. [3] 

Historically, data encryption has been used primarily to protect 

diplomatic and military secrets from foreign governments. It is also now used 

increasingly by the financial industry to protect money transfers, by merchants 

to protect credit-card information in electronic commerce, and by corporations 

to secure sensitive communications of proprietary information.  

All modern cryptography is based on the use of algorithms to scramble 

(encrypt) the original message, called plaintext, into unintelligible babble, 

called ciphertext. The operation of the algorithm requires the use of a key. 

Until 1976 the algorithms were symmetric, that is, the key used to encrypt the 

plaintext was the same as the key used to decrypt the cipher text. In 1977 the 

asymmetric or public key algorithm was introduced by the American 

mathematicians W. Diffie and M. E. Hellman. This algorithm requires two 

keys, an unguarded public key used to encrypt the plaintext and a guarded 

private key used for decryption of the cipher text; the two keys are 

mathematically related but cannot be deduced from one another. The 

advantages of asymmetric algorithms are that compromising one of the keys is 

not sufficient for breaking the cipher and fewer unique keys must be 

generated.[25] 

In 1977 the Data Encryption Standard (DES), a symmetric algorithm, 

was adopted in the United States as a federal standard. DES and the 

International Data Encryption Algorithm (IDEA) are the two most commonly 

used symmetric techniques. The most common asymmetric technique is the 

RSA algorithm, named after Ronald Rivest, Adi Shami, and Len Adleman, 

who invented it while at the Massachusetts Institute of Technology in 1977. 

Other commonly used encryption algorithms include Pretty Good Privacy 



 

(PGP), Secure Sockets Layer (SSL), and Secure Hypertext Transfer Protocol 

(S-HTTP). The National Institute of Standards and Technology (NIST) is 

working with industry and the cryptographic community to develop the 

Advanced Encryption Standard (AES), a mutually acceptable algorithm that 

will protect sensitive government information and will be used by industry on a 

voluntary basis. [25] 

Cryptography (from Greek kryptós, "hidden", and gráphein, "to write") is, 

traditionally, the study of means of converting information from its normal, 

comprehensible form into an incomprehensible format, rendering it unreadable 

without secret knowledge — the art of encryption. In the past, cryptography 

helped ensure secrecy in important communications, such as those of spies, 

military leaders, and diplomats. In recent decades, the field of cryptography has 

expanded its remit in two ways. Firstly, it provides mechanisms for more than 

just keeping secrets: schemes like digital signatures and digital cash, for 

example. Secondly, cryptography has come to be in widespread use by many 

civilians who do not have extraordinary needs for secrecy, although typically it 

is transparently built into the infrastructure for computing and 

telecommunications, and users are not aware of it. [25] 

The study of how to circumvent the use of cryptography is called 

cryptanalysis, or code breaking. Cryptography and cryptanalysis are sometimes 

grouped together under the umbrella term cryptology, encompassing the entire 

subject. In practice, "cryptography" is also often used to refer to the field as a 

whole; crypto is an informal abbreviation. [25] 

Cryptography is an interdisciplinary subject, drawing from several fields. 

Before the time of computers, it was closely related to linguistics. Nowadays 

the emphasis has shifted, and cryptography makes extensive use of technical 

areas of mathematics, especially those areas collectively known as discrete 

mathematics. This includes topics from number theory, information theory, 

computational complexity, statistics and combinatorics. It is also a branch of 



 

engineering, but an unusual one as it must deal with active, intelligent and 

malevolent opposition. [25]  

4.1.2: Terminology: [25] 

 The original information which is to be protected by cryptography is 

called the plaintext. Encryption is the process of converting plaintext into an 

unreadable form, termed ciphertext, or, occasionally, a cryptogram. 

Decryption is the reverse process, recovering the plaintext back from the 

ciphertext. Enciphering and deciphering are alternative terms. A cipher is an 

algorithm for encryption and decryption. The exact operation of ciphers is 

normally controlled by a key — some secret piece of information that 

customizes how the ciphertext is produced. Protocols specify the details of how 

ciphers (and other cryptographic primitives) are to be used to achieve specific 

tasks. A suite of protocols, ciphers, key management, user-prescribed actions 

implemented together as a system constitute a cryptosystem; this is what an 

end-user interacts with, e.g. PGP or GPG. 

In ordinary parlance, a (secret) "code" is often used synonymously with 

"cipher". In cryptography, however, the term has a specialized technical 

meaning: codes are a method for classical cryptography, substituting larger 

units of text, typically words or phrases (e.g., "apple pie" replaces "attack at 

dawn"). In contrast, classical ciphers usually substitute or rearrange individual 

letters (e.g., "attack at dawn" becomes "buubdl bu ebxo" by substitution.). 

4.1.3: Cryptanalysis: 

A cryptanalyst might appear to be the natural adversary of a 

cryptographer. However, it is possible, in fact preferable, to interpret the two 

roles as complementary: a thorough understanding of cryptanalysis is necessary 

to create secure cryptography. [25] 



 

There are a wide variety of cryptanalytic attacks, and it is convenient to classify 

them. One distinction concerns what an attacker can know and do in order to 

learn secret information, e.g. does the cryptanalyst have access only to the 

ciphertext? Does he also know or can he guess some corresponding plaintexts? 

Or even: Can he choose arbitrary plaintexts to be encrypted? [25] 

Cryptanalysis [18] 

The study of methods of defeating cryptosystems, including: 

 The extraction of private information from an encrypted message by 

unauthorized means. 

 The unauthorized alteration of encrypted data. or 

 The impersonation of a participant in the information exchange. 

   Cryptology = Cryptography + Cryptanalysis 

4.1.4: Secure communications [25] 

 Cryptography is commonly used for securing communications. Four 

desirable properties are: 

1. Confidentiality, also known as secrecy: only an authorized recipient 

should be able to extract the contents of the message from its encrypted 

form. Otherwise, it should not be possible to obtain any significant 

information about the message contents.  

2. Integrity: the recipient should be able to determine if the message has 

been altered during transmission.  

3. Authentication: the recipient should be able to identify the sender, and 

verify that the purported sender actually did send the message.  

4. Non-repudiation: the sender should not be able to deny sending the 

message.  

Cryptography can provide mechanisms to help achieve all of the above. 

However, some goals aren't always necessary, practical or even desirable in 



 

some contexts. For example, the sender of a message may wish to remain 

anonymous; clearly non-repudiation would be inappropriate in that case. 

4.2: Types of Cryptosystem: [47] 
Cryptology is the hiding of information so that it is unintelligable to 

those we do not wish to read it and intelligable to those we do. In this section 

we present the fundamental or basic ideas needed to understand the science.  

We start with the question, what information are we trying to hide? The 

answer can range from any number of things; however most importantly it is 

information that we want to keep private. For instance, bank account numbers 

and social security numbers are pieces of information that we don't want 

everyone to be able to obtain. For military purposes, anybody can see the need 

to keep plans of attack secret from the enemy, and cryptology offers a way to 

do this while still using standard lines of communication.  

The most elementary idea in cryptology is the idea of a cryptosystem. 

This is a system in which information can be made unintelligible to all but the 

intended reader. The first component of a cryptosystem is the original set of 

information, called the plaintext. This may be the orders to attack, or the 

account number that we want to keep hidden from prying eyes. The next 

element of a cryptosystem is the algorithm, commonly known as the cipher. 

This is the process that makes the information unreadable to the common 

person. There are many ciphers and many kinds of ciphers; however for the 

most part all of them have the same purpose. The next part of a cryptosystem is 

the information that has been altered, which we call the ciphertext. This is the 

information that is not recognizable, and therefore can be sent out over public 

channels without fear of anybody understanding it. A good representation of a 

cryptosystem is as follows:  

plaintext -> F -> ciphertext -> G -> plaintext 

where F and G are functions or the ciphers.  



 

The cipher can be very complex or very simple. Many common ciphers 

involve substituting one element of the information for another. For instance 

we have the message:  

"THERE IS A WAR IN KASHMIR" 

 

If we replace every 'A' with 'Z', we get  

"THERE IS Z WZR IN KZSHMIR" 

 

Thus, the text now doesn't make much sense (however it is easy to figure out 

what the message says). So usually substitutions are made for the entire 

alphabet.  

There are also ciphers that use numbers to mask the information. This is 

done by first translating the alphabet into a number system, such as A = 1, B = 

2, C = 3,...,Z = 26. For example, the message "A DOG" written numerically is  

"1 4157" 

  It is very confusing and most would not even think to translate it into a 

series of letters. This truly is the idea behind cryptology.  

          Currently, because of computers, most modern cryptosystems all involve 

mathematical ciphers. This means that usually ciphertext looks like nothing 

more than a set of 1's and 0's, which is very hard to decode. This is why there is 

such security in digital data, such as electronic bank accounts.  

 

Within cryptology, there are two sources of study, cryptography, and 

cryptanalysis. Cryptography is the study of encryption, or the transformation 

of information into unintelligible code. Cryptographers are the people who 

invent the ciphers. These people are the codemakers. Cryptanalysis is the 

study of decryption, or the breaking of those codes. It is usually done without 

the key. Cryptanalysists are codebreakers.  

 



 

          Cryptology now plays very important roles in today's society. 

Traditionally, cryptology has been purely a military matter; however currently 

it is part of our everyday lives.  

4.2.1: Symmetric key cryptography: [25] 

 Symmetric key ciphers use the same key for encryption and decryption, 

or a little more precisely, the key used for decryption is "easy" to calculate 

from the key used for encryption. Other terms include "private-key", "one-key" 

and "single-key" cryptography. 

Symmetric key ciphers can be broadly grouped into block ciphers and stream 

ciphers. Stream ciphers encrypt one bit at a time, in contrast to a block cipher, 

which operates on a group of bits (a "block") of a certain length all in one go. 

Depending on the mode of operation, block ciphers can be implemented as 

self-synchronizing stream ciphers (CFB mode). Likewise, stream ciphers can 

be made to work on individual blocks of plaintext at a time. Thus, there is some 

duality between the two. The block ciphers DES, IDEA and AES, and the 

stream cipher RC4, are among the most well-known symmetric key ciphers. 

Other cryptographic primitives are sometimes classified as symmetric 

cryptography: 

 Cryptographic hash functions produce a hash of a message. While it 

should be easy to compute, it must be very difficult to invert (one-way), 

though other properties are usually needed as well. MD5 and SHA-1 are 

well-known hash functions.  

 Message authentication codes (MACs), also known as keyed-hash 

functions, are similar to hash functions, except that a key is needed to 

compute the hash. As the name suggests, they are commonly used for 

message authentication. They are often constructed from other 

primitives, such as block ciphers, unkeyed-hash functions or stream 

ciphers.  



 

4.2.2: Public key cryptography (Asymmetric key 

cryptography): [25] 

 Symmetric key encryption has a troublesome drawback — two people 

who wish to exchange confidential messages must share a secret key. The key 

must be exchanged in a secure way, and not by the means they would normally 

communicate. This is usually inconvenient, and public-key (or asymmetric) 

cryptography provides an alternative. In public key encryption there are two 

keys used, a public and a private key, with the public key for encryption and 

the private key for decryption. It must be "difficult" to derive the private key 

from the public key. This means that someone can freely send their public key 

out over an insecure channel and yet be sure that only they can decrypt 

messages encrypted with it. 

Public key algorithms are usually based on hard mathematical problems. RSA, 

for example, relies on the (conjectured) difficulty of factorization. For 

efficiency reasons, hybrid encryption systems are used in practice; a key is 

exchanged using a public-key cipher, and the rest of the communication is 

encrypted using a symmetric-key algorithm (which is typically much faster). 

Elliptic curve cryptography is a type of public-key algorithm that may offer 

efficiency gains over other schemes. 

Asymmetric cryptography also provides mechanisms for digital signatures, 

which are way to establish with high confidence (under the assumption that the 

relevant private key has not been compromised in any way) that the message 

received was sent by the claimed sender. Such signatures are often, in law or by 

implicit inference, seen as the digital equivalent of physical signatures on paper 

documents. In a technical sense, they are not as there is no physical contact nor 

connection between the 'signer' and the 'signed'. Properly used high quality 

designs and implementations are capable of a very high degree of assurance, 

likely exceeding any but the most careful physical signature. Examples of 



 

digital signature protocols include DSA and ElGamal. Digital signatures are 

central to the operation of public key infrastructure and many network 

security schemes (e.g., Kerberos, most VPNs, etc). Like encryption, hybrid 

algorithms are typically used in practice; rather than signing an entire 

document, a cryptographic hash of the document is signed instead. 

4.3: Public Key Cryptosystem: 
It is the second type of cryptosystem the following lines explain it. 

4.3.1: Introducing Public Key Cryptosystems: [48] 

 An encryption key is a critical piece of information that defines the 

method in which the message is encoded. A decryption key defines how the 

message is to be decoded. For example, the Caesar shift uses a shift 

transformation of three; therefore, the encryption key is the number three and 

the decryption key is negative three.   

(Recall that -3 = 23 mod 26). In any affine transformation  

C = f(P) = (aP + b) mod N, 

in which a and N are relatively prime, the encryption key consists of the values 

a, b and N. Recall that in order to decode the message, the inverse function 

(also called the decoding function) must be calculated:  

f-1 = (a-1 C - a-1 b) mod N. 

 The decryption key, then, consists of a-1, b and N. As a last example, 

suppose that Alice sends Bob a message enciphered using a shift 

transformation. There are, of course, 25 different possible shifts she could use 

to encode her message. The shift she chooses is called the encryption key. To 

decode the message, Bob must use a shift of the same size in the opposite 

direction.   



 

 In private keys cryptosystems, security is compromised if, besides from 

the sender and the receiver of the message, a third party has access to the cipher 

key. So, in the last example above, as long as only Alice and Bob know this 

key, the message is considered secure. However, as we have seen, even 

encryption systems that are considered secure can be decoded by unintended 

recipients. A simple shift transformation can be easily broken by a third party, 

even if the key is unknown to that party. The third party simply checking at 

most 25 different shifts until a part or all of the message is decoded.  

 There is a weakness to this type of message encoding. Namely, there is 

no defense mechanism for invasions by third parties knowing the private 

encryption and decryption keys. As soon as one or both of the private keys are 

known to someone other than the sender-receiver team, there are no guarantees 

that the message will remain unreadable to outsiders.   

 This weakness is not inherent within public key cryptosystems. A public 

key cryptosystem is an encoding method in which the encryption key is 

publicized. In a private key cryptosystem, public knowledge of either or both 

keys can lead to the decoding of the message. In a public key cryptosystem, 

however, knowing the encryption key does not compromise the security, as 

determining the encryption key using only the knowledge of the encryption key 

is computationally feasible, but highly inefficient.   

4.3.2: Public-key cryptography Technology: [31] 

An encryption method that uses a two-part key: a public key and a 

private key. To send an encrypted message to someone, you use the recipient's 

public key, which can be sent to you via regular e-mail or made available on 

any public Web site. To decrypt the message, the recipient uses the private key, 

which he or she keeps secret. Contrast with "secret key cryptography," which 

uses the same key to encrypt and decrypt.  



 

Public-key cryptography is a form of modern cryptography which allows 

users to communicate securely without previously agreeing on a shared secret 

key. For most of the history of cryptography, a key had to be kept absolutely 

secret and would be agreed upon beforehand using a secure, but non-

cryptographic, method; for example, a face-to-face meeting or a trusted courier. 

There are a number of significant practical difficulties in this approach to 

distributing keys. Public-key cryptography was invented to address these 

drawbacks - with public-key cryptography, users can communicate securely 

over an insecure channel without having to agree upon a key beforehand. 

Public-key algorithms typically use a pair of two related keys — one key is 

private and must be kept secret, while the other is made public and can be 

widely distributed; it should not be possible to deduce one key of a pair given 

the other. The terminology of "public-key cryptography" derives from the idea 

of making part of the key public information. The term asymmetric-key 

cryptography is also used because not all parties hold the same information. 

Some public-key algorithms operate a little differently, and use other methods 

to enable parties to agree on secret keys without having previously exchanged 

key material. 

 Public-key cryptography has two main applications. First, is encryption  

keeping the contents of messages secret. Second, digital signatures can be 

implemented using public key techniques. Typically, public-key techniques are 

much more computationally intensive than symmetric algorithms. 

4.3.3: History: [31] 

The first asymmetric key algorithm was invented, secretly, by Clifford 

Cocks (then a recent mathematics graduate and a new staff member at GCHQ 

in the UK) early in the 1970s, and reinvented by Rivest, Shamir and Adleman 

all then at MIT. Their work was published in 1976, and the algorithm was 

named RSA after the initials of their last names. Since then, several other 



 

asymmetric key algorithms have been developed, but the most widely known 

remains Cocks/RSA. It uses exponentiation modulo a product of two large 

primes to encrypt and decrypt. The public key exponent differs from the private 

key exponent, and determining one from the other is believed to be 

fundamentally hard without knowing the primes; these are in turn (if large 

enough) computationally infeasible to determine at the current state of the 

computer hardware and large integer factorization arts. Another algorithm is 

ElGamal (invented by Taher ElGamal then of Netscape) which relies on the 

(similar, and related) difficulty of the discrete logarithm problem. A third is a 

group of algorithms based on elliptic curves, first discovered by Neal Koblitz 

in the mid '80s. 

4.3.4: Security: [31] 

Regarding security, there is nothing special about asymmetric key 

algorithms. There are good ones, bad ones, insecure ones, etc; none have been 

proved secure in the absolute sense the one-time pad has, and some are known 

to be quite insecure. As with all cryptographic algorithms, these algorithms 

must be chosen and used with care. 

4.3.5: Applications: [31] 

The most obvious application is confidentiality; a message which a 

sender encrypts using the recipient's public key can only be decrypted by the 

recipient's paired private key. 

In many cases, public-key algorithms can be used for sender authentication. 

For instance, a user can encrypt a message with her own private key and send 

it. That it can be decrypted using the corresponding public key provides 

assurance than that user (and no other) sent it. 



 

Similarly, in the other direction, a user can be assured that a message using the 

proper key originates from a specific source. 

4.3.6: Practical considerations: [31] 

 Note that so far, all these algorithms are very computationally costly, 

especially in comparison with many symmetric key algorithms of essentially 

equivalent security. This fact has important implications for their practical use. 

Most are used in hybrid cryptosystems for reasons of efficiency. 

4.3.7: Examples: [31] 

Examples of well-regarded asymmetric key algorithms include: 

 Diffie-Hellman  

 RSA encryption algorithm  

 ElGamal  

 Elliptic curve cryptography  

 Paillier cryptosystem  

Examples of not well regarded asymmetric key algorithms include: 

 Merkle-Hellman the 'knapsack' algorithms  

Examples of protocols using asymmetric key algorithms include: 

 DSS (Digital Signature Standard), which incorporates the Digital 

Signature Algorithm  

 PGP  

 GPG an implementation of OpenPGP  

 ssh  

 Secure Socket Layer now implemented as an IETF standard - TLS  

 



 

4.4: RSA Public Key Cryptosystem: 
It is one of the most famous asymmetric key algorithms.  

4.4.1: Introduction to RSA: [48] 

RSA stands for Rivest-Shamir-Adleman, the creators of this public key 

cryptosystem. Suppose Alice would like to send a message to Bob, and suppose 

that each letter mi in the message has already been transformed into a positive 

integer. Bob, being the receiver, must choose two prime numbers, which are 

called p and q. The larger p and q are, the harder the code is to break. 

Typically, p and q are chosen to be numbers of more than 100 digits. Bob then 

computes the product N = pq. Then he computes the product (p - 1)(q - 1). 

Then he finds a composite integer k (k is an integer which is not prime), that 

satisfies the equivalence  

k = mod (p - 1)(q - 1). 

As k is a composite, it has at least two factors other than k and 1. Bob picks two 

of these factors such that their product is k, and calls them e and d, for 

'encoding' and 'decoding'.   

For a plaintext letter P, the encoding function is  

C = E(P) = Pe mod N. 

For a ciphertext letter C, the decoding function is  

P = D(C) = Cd mod N. 

Let us try an example. Bob first chooses the primes p = 2 and q = 11. Bob then 

computes N = 22, and (p - 1)(q - 1) = 10. As  

11 = 1 mod 10, 



 

Bob could choose k to be 11, but then remembers that k has to be a composite 

integer. So Bob tries again, and finds that   

21 = 1 mod 10. 

Because 21 is not a prime, Bob chooses k to be 21. As 21 = 3 * 7, Bob lets       

e = 7 and d = 3. Bob then makes public his encryption key, which is the pair     

e = 7 and N = 22, but keeps the decryption letter d private.   

Now Alice prepares to encrypt her message using the public encryption key. 

The first letter in Alice's message is represented by the number 2. So the first 

letter is encoded as the number 18, because   

18 = E(2) = 27 mod 22. 

When Bob receives the message, he begins to decode the first letter:  

2 = D(8) = 183 mod 22. 

Looking back at our example above, suppose the letter to be encoded was 

represented by a larger number than 2, such as 14. Then to encode, we would 

not need to solve the equivalence  

20 = 147 mod 22. 

Clearly, the multiplication 147 is not efficiently calculated by hand, and the use 

of a calculator does not guarantee a correct solution when the values become 

too big. To ensure that such calculations can be efficiently and correctly 

computed, we present a series of shortcuts in the following lines. 

4.4.2: Tools for RSA Public Key Cryptography: 
As we had discuss modular arithmetic in the previous chapter, in the 

following lines we will first examine operations in modular arithmetic and 

modular exponentiation briefly, which underlie the RSA encryption 



 

procedure, second, an example of RSA encryption and decryption, third 

creation of very large keys in the RSA system using random function, and 

finally explain an algorithm. In this project we want to explain how to create 

very large keys in the RSA system, and discuss that our new data type makes 

the system difficult to break.  

4.4.2.1: Modular Arithmetic and modular 

exponentiation: 

Recall the reduction of a number a by an integer N is defined to be the 

remainder upon division of a by N. For example, the reduction of 32 by 26 is 6. 

We say that 32 is equivalent to 6 modulo 26, or write 32 = 6 mod 26. The 

number N is called the modulus. So far, all of our reductions have used N = 26 

to model the 26 letters of the alphabet. However, modular arithmetic can be 

performed using any positive integer greater than 0. For instance, 18 = 6 mod 

12. Observe that 18 is the representation of 6:00 PM using a 24-hour clock.[48] 

Modular arithmetic refers to performing basic arithmetic operations 

under a certain modulus. For example, consider (10 + 8) mod 12. This is the 

same as 18 mod 12, which is equivalent to 6. Similarly, (2)(12) mod 11 is the 

same as 24 mod 11, which is equivalent to 2. In other words, we perform the 

operation first, and then find the remainder of this result upon division by 

N.[48]  

There are shortcuts which simplify the process of performing modular 

arithmetic. The first is given below.  

(a)(b) mod N is the same as (a mod N)(b mod N) 

As an example, the expression (729)(9) mod 7 can be rewritten as the 

expression (729 mod 7)(9 mod 7). We know that  

729 mod 7 = 1 



 

and  

9 mod 7 = 2. 

Therefore, we have  

(729)(9) mod 7 = (1)(2) mod 7 = 2 mod 7. 

A second shortcut is given as follows.  

am mod N is the same as (a mod N)m. 

For instance, to calculate 94 mod 7, we can either multiply out 94 and then 

reduce that value modulo 7, or we can reduce modulo 7 and then raise this 

value to the fourth power. Clearly, the second option is easier to calculate. So,   

94 mod 7 = (2 mod 7)4 = 16 mod 7 = 2 mod 7, 

This is quite an easy calculation. [48] 

Note that modular addition and multiplication inherit the rules of 

commutatively  

a + b =b + a mod n,  

ab =ba mod n 

and associatively  

(a + b) + c= a + (b + c) mod n 

(ab)c= a(bc) mod n 

From regular arithmetic. [46] 

Modular exponentiation enters into the RSA cryptosystem in an essential 

way. First, recall that in regular arithmetic one computes, for example, 



 

 33 = (32)3 = (9)(3) = 27. However, if we want to compute 33 mod 8, for 

instance, then we will reduce every intermediate stage in the computation: [46] 

33 =323 mod 8 = (1)(3) mod 8 = 3 mod 8 

For example,  

If the modulus n is 8, then 24= 0 mod 8.  

If the modulus n is 55, then 28 =36 mod 55.  [46] 

 Faced with the prospect of computing 28 = (2)(2)(2)(2)(2)(2)(2)(2), it 

pays to try to exploit the rules of exponentiation. In fact, we are going to be 

taking numbers to fantastically large powers modulo n, so it pays to note two 

more facts about the procedure of modular exponentiation before we go farther. 

These rules are analogues of familiar rules from regular arithmetic. [46]   

(ap)q =apq mod n  

apaq =ap+q mod n 

So, if we want to compute 28 mod 55 efficiently, one way to do it is to exploit 

the first rule over and over, obtaining   

28 =((2²)²)²= 36 mod 55 

Note that instead of doing seven multiplications, we only have to do three. If 

you want to compute 217, for example, it pays to realize that 17 = 24 + 20, and 

then you may  

217 =((((2²)²)²)²)2 = 7 mod 55.  [46] 

In this program on the RSA encryption procedure we implement a procedure 

which amounts to the following algorithm. If you want to compute xp relatively 

rapidly, examine the binary expansion p = ak2k + ak-12k-1 + ... + a020, where ak = 

1, and where ai is either 0 or 1. First, write x, which you should think of as 

corresponding to ak = 1, and interpret the sequence of ai's read from left to right 



 

as follows. If ai is zero, square what you have already written, and if ai is one, 

square what you have written and multiply the result by x. For example, if we 

want to compute x11, then write 11 = (1)2³ + (1)2 + 1 = (1011)2. The procedure 

says that (((x2)2)x)2x = x11, which is easy to verify, using the rules of 

exponents.[46] 

4.4.2.2: RSA encryption and decryption: [46] 

Now we can demonstrate the procedures of encryption and decryption in 

the RSA scheme.  

Let n > 1 be a natural number. Then ø(n) is the number of elements in the set 

{a : 1 < a < n and the greatest common divisor of a and n is 1}.  

For example, if n = 8, then the numbers between 1 and 8 prime to 8 are 1,3,5, 

and 7, so ø(8) = 4. It is easy to see that if n = p, a prime, then ø(p) = p - 1. 

Common implementations of the RSA cryptosystem use the fact that if n = p*q 

is a product of distinct primes, then ø(n) = (p - 1)(q - 1). There is a general 

formula for ø(n), but its evaluation requires knowing the prime factorization of 

n.   

Higher Level RSA [48] 

When RSA is actually used to protect private information, the primes p 

and q are chosen to have 100 or more digits. Efficient computer algorithms 

using number theory can quickly locate such large primes. Therefore, the 

modulus N = pq which is made public, will have at least 200 digits. Even with 

the most efficient computer algorithms, factoring a number this large could 

take up several billion years. The encoding number e gives no useful 

information for factoring N. Thus these ciphers are very secure, as the public 

key gives little or no information to help break the private decryption key and 

hence decode the message.  



 

The example below shows a higher level of encoding and decoding, 

although realistically much larger values must be used.  

We choose p = 5 and q = 11. Then N = 55 is the modulus. Finding an integer k 

such that  

k = 1 mod (p - 1)(q - 1)  

= 1 mod 40, 

yields k = 41, 81, 121, 161, etc. Recall that k must be factored into two integers. 

Although any of these values besides 41 is factorable into two integers other 

than 1, we decide to let k = 161. Let e = 23 and d = 7 (note that ed = 161). The 

encoding function is now given as  

C = E(P) = Pe mod N, 

that is,  

C = P23 mod 55. 

To encode the message I AM HERE, we first convert the letters into the 

numerical  string 8 0 12 7 4 17 4, and apply the function E to each of these 

values.  

17 = 823 mod 55 

 

= (23)23 mod 55 

 

= 269 mod 55 

 

= (26)11(23 mod 55) 

 

= (64 mod 55)11(8 mod 55) 

 



 

= (911 mod 55)(8 mod 55) 

 

= (92)59 mod 55)(8 mod 55) 

 

= (81 mod 55)5(72 mod 55) 

 

= (265)(17) mod 55 

 

= ((262)226(17)) mod 55 

 

= ((676 mod 55)2(442)) mod 55 

 

= (162)(2) mod 55 

 

= 512 mod 55 

 

= 17 mod 55 

This means that the number 8 is encoded as 17. To shorten the length of the 

computation, we present a shortcut. First, we find the prime factorization of 

each number to be encoded. That is,  

8 = 23 

 

12 = 22(3) 

 

7 = (1)(7) 

 

4 = 22 

 

17 = (1)(17). 



 

Letting 8 = 23 yields 823 = (23)23.  

223 mod 25 

 

= (26)325 mod 55 

 

= ((64 mod 55)3 mod 55)(25 mod 55) 

 

= (93 mod 55)(32 mod 55) 

 

= (729 mod 55)(32 mod 55) 

 

= (14)(32) mod 55 

= 448 mod 55 

 

= 8 mod 55. 

Thus, 223 = 8 mod 55 and each 223 is replaced by 8. Now  

823 mod 55 

 

= (223)3 mod 55 

 

= 83 mod 55 

 

= 512 mod 55 

 

= 17 mod 55 

We also use the value 223 to encode the numbers 12 and 4. Namely,  

423 mod 55 

 



 

= (22)23 mod 55 

 

= (223)2 mod 55 

 

= 82 mod 55 

 

= 64 mod 55 

 

= 9 mod 55. 

Therefore, the number 4 is encoded as the number 9. To finish encoding the 

message above, we also need to find 323 mod 55, 7723 mod 55, and 1723 mod 

55.  

Observe that the modulus in the encoding function  

C = P23 mod 55 

is larger than 26. If we reduce the numbers {26,...,54} modulo 26, we will end 

up with duplicate associations. This means that the encoded string of numbers 

cannot be converted back into an alphabetical text. This is typical in 

applications of RSA. We consider the encoded string of numbers as the 

ciphertext.  

From these computations above, we readily conclude that the difficulty of 

encoding increases dramatically as the exponents increase from a one-digit 

integer to just a small two-digit integer. Allow yourself to think of the level of 

difficulty this presents to the decoder who possesses the decoding key. To any 

outsider who is not in possession of the decryption key, this task quickly 

becomes next to impossible. Finally note that in actual implementation, the 

RSA process is used with the integers e and d often exceeding 100 digits in 

length.  



 

Observe that for larger values of N, factoring N into the primes p and q, the 

value of d cannot be determined, and the code cannot be broken. In our 

example, where both N and e are publicly known, it is hard to find the value of 

the decryption key d. As N = 55, we recognize that p and q must be 5 and 11 

and k = 1 mod 40. As the encryption key is publicly known to be e = 23, it is 

quite simple to calculate a value for d with k = ed and k = 1 mod 40. Namely, 

as the first multiple of 23 which congruent to 1 mod 40 is 161 = 7 - 23, the 

value for d is 7, and the code can now be deciphered.  

4.4.2.3: Generating very large keys in the RSA system 

using random function: 

 In computing, the term randomness refers to generating or using a set of 

truly random sequence of random numbers within some set range. 

Random number generators have several important applications such as 

cryptography, programming and computer science. 

Cryptographic algorithms maybe strong (meaning difficult to crack) or weak 

(meaning easier to crack). 

 All strong cryptography requires random numbers to generate keys. 

In this research, random function has been defined to generate very large 

numbers. 

 This large numbers represent the keys that’s used in public key 

cryptography, these keys must be random and unpredictable. 

 Here are the algorithms of random_bigint() and random_val(bigint 

value) functions were used in this project: 

I- random_bigint(): 

It doesn’t take any parameter and return random number. 

1- assign constant value for a, b and m 

2- for i= 0 to n  

 2.1 x1=random(1000) 

 2.2 insert x1 in x list ( x.mylist.push_back(x1) ) 



 

3- x= (a*x + b) % m 

4- while (x<0) 

 4.1 x=x+m 

5- return x 

II- random_val(bigint value): 

This function takes one parameter (x) and returns random number less 

than this parameter.  

1- Generate random number (r) using random_bigint() function . 

2- While( r < x) 

 2.1 r = r / x  

3- Return r . 

4.4.2.4: RSA algorithm: [42] 

RSA scheme is as shown blow: 

1. Key Generation: 

1. Random select two large prime numbers p, q; n =p*q 

2. Compute (n)=(p-1)(q-1), number of elements in zn
* 

3. Select e, 1< e <  (n), which is relative prime to  (n) 

that’s mean gcd(e,  (n)) = 1 

4. Compute d, 1 < d <  (n), such that de = 1 mod  (n) 

5. Public key: (e, n), secret key (d, n), the values of p, q,  (n) 

should be secret 

6. n is known as the modulus. 

7. e is known as the public exponent or encryption exponent. 

8. d is known as the secret exponent or decryption exponent. 

 

2. Encryption: m is plaintext message it is a positive integer, such 

that m    Zn
*, C = E(m) = me mod n 

 

3. Decryption: D(c)= cd mod n 



 

Chapter five 

Results  
 In this project a bigint data type had been designed. It had been 

demonstrated that a new data type could be used as any data type in computer 

language. 

 It had been implemented using C++ language. Double linked list was 

selected to store each number, because traversed the list in both directions. 

 The new data type used integer of base 1000, each number was 

represented in a separate list, each node in the list stored three digits. 

5.1: Input and Output operator: 

5.1.1: Input operator: 
 It was the first operator we could overload. Through this operator we 

had entered large numbers by entering one digit at least and three digits at most 

separated by blank and entered a negative integer in the last block to signal to 

the end input. 

 An input operator reads these blocks and attached a node containing the 

value of each of these blocks to number. 

Figure1: demonstrate how can we input and output our large number. 

 



 

5.1.2: Out put operator: 
 It is an operator that displayed the contents of each node by traverse the 

list from left to right, as shown in figure 1. 

5.2: Generating Random Number: 
 We had successfully built our own random function and used it in this 

study. 

Figure 2: illustrate random number generated with about three hundred digits. 

 

 

5.3: Arithmetic operations: 
 The new data type was a complete class capable of performing an 

arithmetic operations. An arithmetic and relational operators had been 

overloaded. 

 The relational operators were so important to do a comparison between 

numbers. The five arithmetic operations had been defined using bigint data 

type. 

 In each operation of the following, two large integers was generated and 

the result of addition, subtraction, multiplication, division and modulation 

could be declare: 

 



 

5.3.1: Addition:  
An addition of two numbers, each number consist of 150 digits. 

Figure 3: Adding two large numbers. 

 

5.3.2: Subtraction:  
Subtraction two numbers, each number consist of 150 digits. 

Figure 4: subtraction of two large  numbers: 

 



 

We notice that the first number is less than number2, and the result is in 

negative number. 

5.3.3: Multiplication: 

Multiply two numbers each one consist of 150 digits, the result will be number 

of 300 digits. 

Figure 5: Multiply two large numbers. 

 

 

 

 

 

 

 

 

 



 

5.3.4: Division:  

Division of two numbers consist of 150 digits. 

Figure 6: Divide two large numbers. 

 

5.3.5: Modulation:  

The modulation of two numbers consist of more than 100 digits. 

Figure 7: Modulation of two large numbers. 

 

 

 



 

5.4: Obtaining Greatest Common Divisor(GCD): 
 The need for the Greatest Common Divisor (GCD) arise in 

cryptography. 

 We had used an Euclidean Algorithm to obtain the GCD of two large 

integers. We were dealt with large integers, so, it took several seconds. 

Figure 8: declare the GCD of two large integers and the time that it had taken. 

 

5.5: Inverse Modulo: 
 As shown in previous chapter, inverse modulo was important in many 

applications in cryptograph. 

 By using bigint data type and Extend Euclidean algorithm  we could 

obtain the inverse modulo of any large number. 

5.6: Repeated square and multiply algorithm: 
 In public key cryptography the exponentiation is the most important 

operation. By using RSMA we had reduced the number of multiplication xe 

It had been defined and adapted by a new data type gave a perfect result in a 

few second. 

RSMA algorithm was used in encryption and decryption operations. 

 

 

 



 

5.7: Miller Rabin Primality Test:  
 

 As we had explained in previous chapter, prime number was very 

important in cryptography. In this study we had used Miller Rabin test to make 

sure that all numbers were generated as prime. 

 It was the most difficult operation. It was took a long of time to generate 

too long prime number. 

 

5.8. RSA Public key cryptosystem: 
 

 The implementation of this study was RSA Public key cryptosystem: it 

could be separated into three modules:  

1-Key generation. 

2-Encryption. 

3-Decryption. 

 

5.8.1 Key generation: 
 

Here is the steps had been followed: 

1- Select two large prime numbers. 

2- Calculate n=p × q 

3- Calculate )( n = (p - 1) ×(q - 1) 

4- Select large integer e, on condition that gcd ( )( n , e) = 1 and 

1 < e < )( n  

5- Calculate d,  d = e-1 mod )( n so, the public key {e} and 

private key {d} . 



 

5.8.2: Encryption: 
 The encryption operation was used the public key {e} to encrypt the 

message {m}, which must be less than {n}.    

 

c = me mod n 

m = message 

c = cipher  

e = public key  

d = private key 

  

5.8.3: Decryption: 
 The cipher text was decrypted by using private key {d} to get the 

original message. 

m = cd mod n 

 

 

 



 

Chapter six 

Conclusion and Recommendation 

6.1: Conclusion 
It has been demonstrated that a new data type can be successfully 

incorporated into C++ language. We had defined a lot of functions that provide 

the programmer with a means to manipulate all parts of the data type.  

 

The class bigint provides a multiprecision integer arithmetic. A variable 

of type bigint can hold an integer with arbitrarily many digits. We had defined 

the type bigint and we wish you can regard a variable of type bigint as an int 

variable without length restriction.  

The class bigint is important to do a multiple-precision arithmetic 

routines written in C++  to carry out the usual large natural number calculations 

required in cryptography calculations. 

A program is designed to define bigint class, which has been built using 

overloading operators for objects of a new class. Operators are defined as  

member functions and friend functions. The program also defines a lot of 

algorithms. It includes the classical multiple-precision arithmetic algorithms: 

addition, subtraction, multiplication, division and modulation. It also includes 

number theory functions such as greatest common divisor, modular arithmetic, 

modular exponentiation, convert any large integer number to its binary 

representation, check if a large integer is probably prime or not, and inverses 

modular.  

The project applied the new data type in the RSA pubic key 

cryptosystem, which is excellent tests for the integrity of most of the functions 

in the project. 



 

The RSA (Rivest-Shamir-Adleman) cryptosystem is widely used for 

secure communication in browsers, bank ATM machines, credit card machines, 

mobile phones, smart cards, and the Windows operating system. It works by 

manipulating large integers. To thwart eavesdroppers, the RSA cryptosystem 

will manipulate large integers (hundreds of digits). The built-in C/C++ type int 

is only capable of dealing with 16 or 32 bit integers, providing little or no 

security. We were designed, implemented, and analyzed an extended precision 

arithmetic data type that is capable of manipulating much larger integers. We 

will use this data type to encrypt and decrypt messages using RSA. 

6.2: Recommendation  

In this study bigint number base was 1000 and was represented in a list 

of type integer, it makes the calculation so easy but there was an allocated 

memory that’s never used. We wish others to do  a good manipulation. 

Also, The effort made in this project was devoted to integer arithmetic, 

we wish others to extend this class to include real numbers. Real arithmetic is 

not hard to be achieved with multiple precisions floating numbers. They are so 

essential in performing accurate numerical computation. This mean a  ( bigfloat) 

class for real number arithmetic could be defined. It would require a bit of 

thinking, but it should not require so much extra coding because integer 

arithmetic and real number arithmetic are very similar. It would be a very 

respectable accomplishment for a novice programmer. 



 

References 
[1]almaak.usc.edu/~tbrun/course/lecture15.pdf. Downloaded on 4/2005. 

 

[2]Art friedman, Lars Klander, Mark Michaelis, and Herb Schildt. 1999. 

C/C++ Annotated Archives. Tota McGraw-Hill Publishing Company Limited 

NEW DELHI.  

 

[3]cs.colgate.edu/faculty/stina/courses/cosc/102/f02/labs/Lab01/Lab1.html. 

Downloaded on 3/2005. 

 

[4]eee.ucc.ie/staff/marnanel/files/papers/Daly-Marnane-Popvici-ISSC2003.pdf. 

Downloaded on 4/2005. 

 

[5]encyclopedia.laboralawtalk.com/Copime. Downloaded on 4/2005. 

 

[6]Eric W. Weisstein et al. “Carmichael Number” From MathWorld--A 

Wolfram Web Resource. http:://mathworld.wolfram.com/CarmichaelNumber.html. 

Downloaded on 3/2005. 

 

[7]Eric W. Weisstein et al. “Modular Inverse.” From MathWorld--A Wolfram 

Web Resource. http:://mathworld.wolfram.com/ModularInverse.html. 

Downloaded on 3/2005. 

 

[8]Eric W. Weisstein et al. “Prime Number.” From MathWorld--A Wolfram 

Web Resource. http:://mathworld.wolfram.com/PrimeNumber.html. 

Downloaded on 3/2005. 

 

[9]gethelp.devx.com/techtips/cpp-pro/10min/10min0599.asp.Downloaded 

10/2004. 



 

[10]Herbert Schildt. 2003. The complete Reference C++. Fourth edition. Tata 

McGraw. Hill Publishing Company Limited NEW DELHI. 

 

[11]java.sun.com/JDK-1.0/api/java.Lang.Number.html#-top-. Downloaded on 

4/2005. 

 

[12]Kenneth h. Rosen. Elementary number theory and its application. 1993. 

Third edition. AT&T Bell Laboratories. 

 

[13]Larry R. Uyhoff. C++ Introduction To Data Structure. 

 

[14]math.carleton.ca/~help/Mathworks_R13Doc/Techdoc/matlab_prog/ch10-

p20.htm. Downloaded on 4/2005. 

 

[15]math.uwyo.edu/~moorhous/quantum/talk3.pdf. Downloaded on 2/2005. 

 

[16]mayukhbose.com/tutorials/overloading/index.php. Downloaded on 3/2005. 

 

[17]Menezee, A. ; Ocrschot, P. van and Vanstone, S. (1996). Hand book of 

Applied Cryptography. CRC Press. Available on 

www.cacr.math.uwaterloo.ca/hac/ 

 

[18]msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_ia-

iz_3ss4.asp. Downloaded on 4/2005. 

 

[19]msdn.microsoft.com/library/default.asp?url=/library/en-

us/vblr7/html/vadatinteger.asp. Downloaded on 4/2005. 

 

[20]perl.about.com/cs/programminhtips/a/aa072301_2.htm. 

Downloaded on 4/2005. 

 



 

[21]primes.utm.edu/glossary/page.php?sort=RelativelyPrime.  

Downloaded on 3/2005. 

 

[22]visualbasic.about.com/od/usevb6/1/aa032903d.htm. Downloaded on 

4/2005 

 

[23]www.absoluteastronomy.com/encyclopedia/n/nu/numeral_system.htm. 

Downloaded on 3/2005. 

 

[24]www.answers.com/main/ntquery?jsessionid=6dr2m9n17klo7?method=4& 

dsid=2222&dekey=Primality+test&gwp=8&curtab=2222_1&sbid=lc03a. 

Downloaded on 3/2005. 

 

[25]www.answers.com/main/ntquery?method=4&dsid=2222& 

dekey=Cryptography&gwp=8&curtab=2222_1. Downloaded on 3/2005. 

 

[26]www.answers.com/main/ntquery?method=4&dsid=2222& 

dekey=Fermat+primality+test&gwp=8&curtab=2222_1.  

Downloaded on 3/2005. 

 

[27]www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Miller-

Rabin=primality+test&gwp=8&curtab=2222_1. Downloaded on 3/2005. 

 

[28]www.answers.com/main/ntquery?method=4&dsid=2222& 

dekey=Modular+exponentiation&gwp=8&curtab=2222_1. Downloaded on 

3/2005. 

 

[29]www.answers.com/main/ntquery?method=4&dsid=2222& 

dekey=Number+theory&gwp=8&curtab=2222_1. Downloaded on 3/2005. 

 

[30]www.answers.com/main/ntquery?method=4&dsid=2222& 



 

dekey=Pseudoprime&gwp=8&curtab=2222_1. Downloaded on 3/2005. 

 

[31]www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Public-

key+cryptography&gwp=8&curtab=2222_1. Downloaded on 3/2005. 

 

[32]www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Solovay-

Strassen+primality+test &gwp=8&curtab=2222_1. Downloaded on 3/2005.  

 

[33]www.bletchleypark.net/cryptology/Number-Theory.pdf. Downloaded on 

4/2005. 

 

[34]www.cryptomathic.com/labs/rabinprimalitytest.html. Downloaded on 

3/2005. 

 

[35]www.csc.liv.ac.uk/~Frans/COMP101/week3/types.html#dataTypes. 

Downloaded on 4/2005. 

 

[36]www.c-sharpcorner.com/Code/2004/sept/DataTypeandVariables.asp. 

Downloaded on 4/2005. 

 

[37]www.delphibasic.co.uk/Aricle.asp?. Downloaded on 4/2005. 

 

[38]www.eng.tau.ac.il/~yash/crypt-netsec/zuck-rsa-rabin-elgamal.pdf. 

Downloaded on 1/2005. 

 

[39]www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9400.pdf.  Downloaded on 

3/2005. 

 

[40]www.functionx.com/objectpascal/lesson05.htm. Downloaded on 4/2005. 

 



 

[41]www.gamespp.com/c/introductionToCppMetrowerkslessono8.html. 

Downloaded on 3/2005. 

 

[42]www.lehigh.edu/~tkr2/teaching/ie170/lectures/lecture23.pdf. Downloaded 

on 3/2005. 

 

[43]www.ma.umist.ac.uk/avb/117ws9.html. Downloaded on 3/2005. 

 

[44]www.ma.utexas.edu/ users/ode11/ch3-numtheory.pdf. Downloaded on 

4/2005. 

 

[45]www.mast.queensu.ca/~math418/m418oh/m418oh12.pdf. Downloaded on 

12/2004. 

 

[46]www.math.nmsu.edu/crypto/public_html/BegRSA.html. Downloaded on 

3/2005. 

 

[47]www.math.nmsu.edu/crypto/public_html/Fundamentals.html. Downloaded 

on 3/2005. 

 

[48]www.math.nmsu.edu/crypto/public_html/Publickey.html. Downloaded on 

3/2005. 

 

[49]www.math.umbc.edu/~campell//Numthy/class/BasicNumberthy.html. 

Downloaded on 3/2005. 

 

[50]www.tacc.utexas.edu/services/userguides/pgi/pgiws-

ug/pgi32u06.htm#heading71. Downloaded on 4/2005. 

 

[51]www.tacc.utexas.edu/services/userguides/pgi/pgiws-

ug/pgi32u06.htm#heading74. Downloaded on 4/2005. 



 

 

[52]www1.cs.columbia.edu/~tal/4995/lect_notes/ITC6.pdf. Downloaded on 

4/2005. 

 

[53]www-Fs.informatik.uni-tuebingen.de/~reinhard/krypto/English/2.2.e.html. 

Downloaded on 3/2005. 

 

[54]www-math.cudenver.edu/~wcherowi/courses/m5410/exeucalg.html. 

Downloaded on 4/2005. 

 

[55]www-users.itlabs.umn.edu/classes/spring-

2003/csci113/1113_Final_Project.pdf. Downloaded on 12/2004. 

 

 

 



 

 
 
 
 
 

 
 
 

Appendix



 

////////**************************bigint.cpp ******************** 
#include<iostream> 
#include<iomanip> 
#include<list> 
#include<time.h> 
#include<stdlib.h> 
#include "bigint.h" 
/////**************************Main Program ************** 
int main() 
{ 
   bigint msg,result; 
 time_t t1,t2,t3; 
  int hr,min,sec; 
 int i; 
 
   zero.mylist.push_back(0); 
   one.mylist.push_back(1); 
   two.mylist.push_back(2); 
 
    cout<<"    ******************************************************"<<endl; 
    cout<<"     *  Enter 3-digit blocks , separated by spaces.                                  *"<<endl; 
    cout<<"     *  Enter a negative integer in last block to signal                            *"<<endl; 
    cout<<"     *  to the end of input.                                                                       *"<<endl; 
    cout<<"     *****************************************************"<<endl; 
 
cout<<"Enter Your MSG Please :"; 
cin>>msg; 
t1=time(NULL); 
result=RSA(msg); 
t2=time(NULL); 
t3=t2-t1; 
hr=t3/3600; 
t3=t3%3600; 
min=t3/60; 
sec=t3%60; 
cout<<"\n The Result = \n"<<result; 
cout<<"The Execution Had Taken "<<hr<<":"<<min<<":"<<sec<<" To Execute"; 
cin>>i; 
 return 0; 
}



 

////////////********************bigint.h*******************/////////// 
#include<iostream> 
#include<iomanip> 
#include<list> 
#include<stdlib.h> 
 
using namespace std ; 
class bigint 
{ 
       public: 
       friend istream& operator>>(istream& in,bigint& number); 
       friend ostream& operator<<(ostream& out,bigint& number); 
       friend bool operator==(bigint number1,int number2); 
       friend bool operator!=(bigint number1,int number2); 
       friend bool operator==(bigint number1,bigint number2); 
       friend bool operator!=(bigint number1,bigint number2); 
       friend bool operator>(bigint number1,int number2); 
       friend bool operator<(bigint number1,int number2); 
       friend bool operator<=(int number1,bigint number2); 
       friend bool operator>=(bigint number1,int number2); 
       friend bool operator<=(bigint number1,int number2); 
       friend bool operator<(bigint number1,bigint number2); 
       friend bool operator>(bigint number1,bigint number2); 
       friend bigint operator+(bigint number1,bigint number2); 
       friend bigint operator-(bigint number1,bigint number2); 
       friend bigint operator*(bigint number1,bigint number2); 
       friend bigint operator/(bigint number1,bigint number2); 
       friend bigint operator%(bigint number1,bigint number2); 
       friend bigint get_value(bigint number1, bigint number2); 
       friend bigint absolute(bigint number); 
       friend bigint change_sign(bigint number); 
       friend bigint divid(bigint number1,bigint number2); 
       friend bigint pin_num(bigint number1); 
       friend bigint EA(bigint number1,bigint number2); 
       friend bigint EEA(bigint number1,bigint number2, bigint &d,bigint &x,bigint &y); 
       friend bigint RSMA(bigint x, bigint e, bigint n); 
       friend bigint calc(bigint n, bigint &s, bigint &r); 
       friend bool   Prime(bigint x); 
       friend bigint random_bigint(); 
       friend bigint random_val(bigint number2); 
       friend bigint discard(bigint number); 
       friend bigint num_list(int number); 
       friend bigint RSA(bigint plain); 
       list<int> mylist; 
}; 
bigint zero,one,two; 
////**************** insert number to list 
bigint num_list(int number) 
{ 
bigint value; 
int result; 
 if((number>=0)&&(number<=999)) 
    value.mylist.insert(value.mylist.begin(),number); 
 else 
   if(number>999) 
   { 
     while(number > 0) 
  { 
     result=number%1000; 
     number=number/1000; 



 

     value.mylist.insert(value.mylist.begin(),result); 
 } 
    } 
return value; 
} 
//******overload assignment operator (==)****** 
bool operator==(bigint number1 ,int number2) 
{ 
bigint number; 
number1=discard(number1); 
number=num_list(number2); 
   if(number1==number) 
  return true; 
   else 
  return false; 
} 
//******overload not equal operator (!=)****** 
bool operator!=(bigint number1 ,int number2) 
{ 
bigint number; 
number1=discard(number1); 
number=num_list(number2); 
 if(number1!=number) 
  return true; 
 else 
  return false; 
} 
//******overload assignment operator (==)****** 
bool operator==(bigint number1 ,bigint number2) 
{ 
number1=discard(number1); 
number2=discard(number2); 
int size1=number1.mylist.size(),size2=number2.mylist.size(); 
list<int>::iterator it1 = number1.mylist.begin(); 
list<int>::iterator it2 = number2.mylist.begin(); 
if(size1==size2) 
{ 
 while(it1 != number1.mylist.end() && it2 != number2.mylist.end()) 
 { 
    if((*it1)==(*it2)) 
       { 
       it1++; 
       it2++; 
       } 
    else 
    return false; 
 } 
} 
 else 
    if(size1!=size2) 
 return false; 
} 
//******overload not equal operator (!=)****** 
bool operator!=(bigint number1,bigint number2) 
{ 
int size1=number1.mylist.size(), 
     size2=number2.mylist.size(); 
list<int>::iterator it1 = number1.mylist.begin(); 
list<int>::iterator it2 = number2.mylist.begin(); 
if(size1==size2) 



 

{ 
while(it1 != number1.mylist.end() && it2 != number2.mylist.end()) 
{ 
    if(*it1!=*it2) 
    { 
    return true; 
    break; 
    } 
    else 
    if((*it1)==(*it2)) 
    { 
    it1++; 
    it2++; 
    } 
    else     return false; 
   } 
} 
else 
 { 
   if(size1!=size2) 
 return true ; 
 else 
 return false; 
 } 
} 
//******overload greater than operator (>)****** 
bool operator>(bigint number1 ,int number2) 
{ 
bigint number; 
number1=discard(number1); 
number=num_list(number2); 
   if(number1>number) 
  return true; 
   else 
  return false; 
} 
//******overload less than operator (<)****** 
bool operator<(bigint number1 ,int number2) 
{ 
number1=discard(number1); 
list<int>::iterator it_x=number1.mylist.begin(); 
 if(*it_x < number2) 
  return true; 
   else 
  return false; 
} 
//******overload greater than or equal operator (>=)****** 
bool operator>=(bigint number1 ,int number2) 
{ 
bigint number; 
number1=discard(number1); 
number=num_list(number2); 
   if((number1>number)||(number1==number)) 
  return true; 
   else 
  return false; 
} 
//******overload less than or equal operator (<=)****** 
bool operator<=(bigint number1 ,int number2) 
{ 



 

number1=discard(number1); 
list<int>::iterator it_x=number1.mylist.begin(); 
   if((*it_x<number2)||(*it_x==number2)) 
  return true; 
   else 
  return false; 
} 
//******overload greater than operator (>)****** 
bool operator>(bigint number1,bigint number2) 
{ 
number1=discard(number1); 
number2=discard(number2); 
 
int size1=number1.mylist.size(), 
  size2=number2.mylist.size(); 
list<int>::iterator it1 = number1.mylist.begin(); 
list<int>::iterator it2 = number2.mylist.begin(); 
 
if(size1==size2) 
{ 
while(it1 != number1.mylist.end() && it2 != number2.mylist.end()) 
{ 
    if(*it1>*it2) 
    { 
    return true; 
    break; 
    } 
    else 
    if((*it1)==(*it2)) 
    { 
    it1++; 
    it2++; 
    } 
    else 
    return false; 
   } 
} 
else 
{ 
   if(size1>size2) 
 return true ; 
  else 
 return false; 
} 
} 
//******overload less than operator (<)****** 
bool operator<(bigint number1,bigint number2) 
{ 
number1=discard(number1); 
number2=discard(number2); 
bool x; 
int size1=number1.mylist.size(), size2=number2.mylist.size(); 
list<int>::iterator it1 = number1.mylist.begin(); 
list<int>::iterator it2 = number2.mylist.begin(); 
 
if(size1==size2) 
{ 
while(it1 != number1.mylist.end() && it2 != number2.mylist.end()) 
{ 
    if(*it1<*it2) 



 

    { 
    return true; 
    break; 
    } 
    else 
    if((*it1)==(*it2)) 
    { 
    it1++; 
    it2++; 
    } 
    else 
    return false; 
   } 
} 
else 
{ 
   if(size1<size2) 
 return true; 
   else 
 return false; 
} 
} 
//******overload less than operator (<)****** 
bool operator<=(int number1,bigint number2) 
{ 
bigint number; 
number2=discard(number2); 
number=num_list(number1); 
   if(number1<=number) 
  return true; 
   else 
  return false; 
} 
//**********define operator >> 
istream& operator>>(istream& in , bigint& number) 
{ 
   int block ; 
   cin>>block; 
   if (block > 999) 
   cerr<<"Illegal block --" <<block<<"--ignoring \n"; 
   else 
      number.mylist.push_back(block); 
 for(;;) 
  { 
   cin>>block; 
   if (block < 0) return in; 
        if (block > 999) 
            cerr<<"Illegal block --" <<block<<"--ignoring \n"; 
        else 
             number.mylist.push_back(block); 
  } 
} 
//*******************define operator << 
ostream& operator<<(ostream& out,bigint& number) 
{ 
 out << setfill('0'); 
 int charcount = 0 ; 
 list<int>::iterator it; 
 for(it = number.mylist.begin();it !=number.mylist.end(); it++) 
 { 



 

                  if(*it<0) out<<*it<<' '; 
                  else 
                  { 
  out << setw(3)<< *it << ' '; 
  charcount++ ; 
           if(charcount > 0 && charcount % 20 ==0) 

              out<< endl; 
                   } 
 } 
 out << endl; 
} 
///////////////////// defione absolute function 
bigint absolute(bigint number) 
{ 
number=discard(number); 
 
list<int>::iterator it = number.mylist.begin(); 
if(*it<0) 
{ 
number.mylist.pop_front(); 
number.mylist.insert(number.mylist.begin(),abs(*it)); 
} 
return number; 
} 
/////////////// change sign to negative 
bigint change_sign(bigint number) 
{ 
number=discard(number); 
list<int>::iterator it = number.mylist.begin(); 
int x; 
x=((*it) * (-1)); 
number.mylist.pop_front(); 
number.mylist.insert(number.mylist.begin(),x); 
 
return number; 
} 
///*********** define function get_value 
bigint get_value(bigint number1, bigint number2) 
{ 
bigint value,num,val; 
number1=discard(number1); 
number2=discard(number2); 
 
list<int>::iterator it_1 = number1.mylist.begin(); 
list<int>::iterator it_2 = number2.mylist.begin(); 
 
 if((*it_1<0)&&(*it_2<0)) 
 { 
      number1=absolute(number1); 
      number2=absolute(number2); 
    if(number1>number2) 
    { 
        value=number1 - number2; 
        num=change_sign(value); 
  val=num; 
 } 
    else 
    if(number2>number1) 
 { 
        value=number2-number1; 



 

  val=value; 
 } 
} 
else 
 if(((*it_1>=0)&&(*it_2>=0))&&(number1<number2)) 
 { 
  value=number2-number1; 
  num=change_sign(value); 
  val=num; 
 } 
if(val!=zero) discard(val); 
return val; 
} 
///************Overload Summation Operator********/// 
bigint operator+(bigint number1,bigint number2) 
{ 
number1=discard(number1); 
number2=discard(number2); 
bigint sum,num,val,value; 
int m,defsize,first,second,result,carry=0; 
int size1=number1.mylist.size(), size2=number2.mylist.size(),maxsize=(size1 < size2 ? size2 : size1); 
list<int>::reverse_iterator it1 = number1.mylist.rbegin(); 
list<int>::reverse_iterator it2 = number2.mylist.rbegin(); 
list<int>::iterator it_1 = number1.mylist.begin(); 
list<int>::iterator it_2 = number2.mylist.begin(); 
 
if((*it_1==0)&&(*it_2<0)) 

sum=number2; 
else 
if((*it_1<0)&&(*it_2==0)) 

sum=number1; 
else 
 if((*it_1<0)&&(*it_2<0)) 
   { 
    number1=absolute(number1); 
    number2=absolute(number2); 
    value=number1+number2; 
    num=change_sign(value); 
    sum=num; 
   } 
else 
 if((*it_1<0)&&(*it_2>0)) 
 { 
   number1=absolute(number1); 
    if(number1>number2) 
    { 
        value=number1 - number2; 
        num=change_sign(value); 
  sum=num; 
 } 
    else 
    if(number2>number1) 
 { 
        value=number2-number1; 
  sum=value; 
 } 
} 
else 
if((*it_2<0)&&(*it_1>0)) 
 { 



 

   number2=absolute(number2); 
    if(number1>number2) 
    { 
         value=number1 - number2; 
          sum=value; 
    } 
   else 
   if(number2>number1) 
   { 
        value=number2-number1; 
        num=change_sign(value); 
        sum=num; 
   } 
} 
else 
 if((number1<number2)||(number1>=number2)) 
{ 
     if(size1 > size2) 
     { 
     defsize=maxsize-size2; 
     for(m=0;m<defsize;m++) 
     number2.mylist.insert(number2.mylist.begin(),0); 
     } 
     else 
     { 
     defsize=maxsize-size1; 
     for(m=0;m<defsize;m++) 
     number1.mylist.insert(number1.mylist.begin(),0); 
     } 
 while (it1 != number1.mylist.rend() && it2 != number2.mylist.rend()) 
  { 
  if (it1 != number1.mylist.rend()) 
   { 
    first = *it1; 
    it1++; 
   } 
  else 
  first=0; 
  if(it2 != number2.mylist.rend()) 
   { 
    second = *it2; 
    it2++; 
   } 
  else 
  second = 0; 
  int temp = first + second + carry ; 
  result = temp % 1000; 
  carry = temp / 1000; 
  sum.mylist.insert(sum.mylist.begin(),result); 
      } 
  if (carry > 0) 
  sum.mylist.insert(sum.mylist.begin(),carry); 
     } 
     sum=discard(sum); 
  return sum ; 
} 
/////******Overload Subtraction Operation **********//// 
bigint operator-(bigint number1,bigint number2) 
{ 
bigint sub,value,num; 



 

number1=discard(number1); 
number2=discard(number2); 
 
int x,m,defsize,first,second,result; 
int size1=number1.mylist.size(), size2=number2.mylist.size(), maxsize=(size1 < size2 ? size2 : size1); 
list<int>::reverse_iterator it1 = number1.mylist.rbegin(); 
list<int>::reverse_iterator it2 = number2.mylist.rbegin(); 
list<int>::iterator it_1 = number1.mylist.begin(); 
list<int>::iterator it_2 = number2.mylist.begin(); 
 
if((number1==zero)&&(*it_2<0)) 
{ 
 number2=absolute(number2); 
 sub=number2; 
} 
else 
if((*it_1<0)&&(number2==zero)) 

sub=number1; 
else 
if((*it_1>0)&&(number2==zero)) 

sub=number1; 
else 
 if((*it_1<0)&&(*it_2<0)) 

 sub=get_value(number1,number2); 
else 
 if((*it_1<0)&&(*it_2>0)) 
    { 
      number1=absolute(number1); 
      number2=absolute(number2); 
      value=number1+number2; 
      num=change_sign(value); 
      sub=num; 
    } 
 else 
 if((number1==zero)&&(*it_2>0)) 
    { 
      num=change_sign(number2); 
      sub=num; 
    } 
 
 else 
 if((*it_1>0)&&(*it_2<0)) 
 { 
  number2=absolute(number2); 
   sub=number1+number2; 
 } 
 else 
 if(number1<number2) 

 sub=get_value(number1,number2); 
 else 
if(number1==number2) 
 sub=zero; 
 else 
 if(number1>number2) 
    { 
       if(size1 > size2) 
     { 
     defsize=maxsize-size2; 
     for(m=0;m<defsize;m++) 
     number2.mylist.insert(number2.mylist.begin(),0); 



 

     } 
     else 
     { 
     defsize=maxsize-size1; 
     for(m=0;m<defsize;m++) 
     number1.mylist.insert(number1.mylist.begin(),0); 
     } 
 
 while (it1 != number1.mylist.rend() && it2 != number2.mylist.rend()) 
 { 
             if (it1 != number1.mylist.rend()) 
      { 

            if(*it1 < *it2) 
            { 
               first=*it1 + 1000; 
               it1++; 

                              x=*(it1) - 1; 
                              *(it1)=x; 
                           } 
                          else 
                         { 
  first = *it1; 
  it1++; 
                          } 
 } 
 else 
  first=0; 
  if(it2 != number2.mylist.rend()) 
 { 
         second = *it2; 
         it2++; 
               } 
 else 
       second = 0; 
    int temp = first - second  ; 
    result = temp % 1000; 
    sub.mylist.insert(sub.mylist.begin(),result); 
    } 
} 
sub=discard(sub); 
  return sub ; 
} 
///*******Overload Multiplication Operation *********/// 
bigint operator*(bigint number1,bigint number2) 
{ 
bigint number11,number22,mult; 
int b,c,n,j; 
int i,ii,s; 
number1=discard(number1); 
number2=discard(number2); 
    s=0; 
   unsigned long int sum[200][200],sum_num[200][200],mult_num[200]; 
   unsigned long int temp1,result,result1,carry,carry1; 
   int size1=number1.mylist.size(),size2=number2.mylist.size(),maxsize=(size1 < size2 ? size2 : size1); 
       n=size1+size2; 
number11=number1; 
number22=number2; 
 
number1=absolute(number1); 
number2=absolute(number2); 



 

 
if((number1==zero)&&(number2>=zero)) 

mult=zero; 
else 
if((number2==zero)&&(number1>=zero)) 

mult=zero; 
else 
if((number1==one)&&(number2>zero)) 

mult=number2; 
else 
if((number2==one)&&(number1>zero)) 

mult=number1; 
else 
{ 
 for(i=0;i<=size1+size2+1;i++) 
 { 
   for(j=0;j<=size1+size2+1;j++) 
   { 
     sum[i][j]=0; 
     sum[j][i]=0; 
     sum_num[i][j]=0; 
     sum_num[j][i]=0; 
     mult_num[i]=0; 
   } 
} 
       b=0; 
        for(list<int>::reverse_iterator it2=number2.mylist.rbegin();it2!=number2.mylist.rend();it2++) 
        { 
             c=0;j=0; 
          for(list<int>::reverse_iterator it1 = number1.mylist.rbegin();it1 != number1.mylist.rend();it1++) 
             { 
                   i=0; 
                    if((c>=1)||(b>=1)) 
                   { 
                        for(ii=0;ii<c+b;ii++) 
          { 
                           sum[j][i]=0; 
                    i++; 
                        } 
                     } 
                     result1=(*it1)*(*it2); 
                  while((result1>999)||(result1>0)) 
               { 
                          temp1=result1%1000; 
                          sum[j][i]=temp1; 
                          result1=result1/1000; 
                          i++; 
                      } 
                     j++; 
                     c=c+1; 
              }//end first for loop 
    if(s<=size2) 
    { 
       carry=0; 
        for(i=0;i<n;i++) 
         { 
          sum_num[s][i]=0; 
          for(j=0;j<size1+1;j++) 
            { 
            sum_num[s][i]=sum_num[s][i]+sum[j][i]; 



 

            } 
            sum_num[s][i]=sum_num[s][i]+carry; 
            carry=sum_num[s][i]/1000; 
            sum_num[s][i]=sum_num[s][i]%1000; 
         } 
     } 
   b=b+1; 
   s++; 
          for(i=0;i<=size1+size2+1;i++) 
         { 
    for(j=0;j<=size1+size2+1;j++) 
    
                                          { 
            sum[i][j]=0; 
            sum[j][i]=0; 
     } 
                                  } 
} 
      carry1=0; 
      for(i=0;i<n;i++) 
      { 
         mult_num[i]=0; 
         for(j=0;j<maxsize;j++) 
         { 
            mult_num[i]= mult_num[i]+ sum_num[j][i]; 
          } 
          mult_num[i]=mult_num[i]+carry1; 
          result=mult_num[i]%1000; 
          carry1=mult_num[i]/1000; 
          mult.mylist.insert(mult.mylist.begin(),result); 
       } 
     if (carry1 > 0) 
 mult.mylist.insert(mult.mylist.begin(),carry1); 
 } 
list<int>::iterator it_11 = number11.mylist.begin(); 
list<int>::iterator it_22 = number22.mylist.begin(); 
 
if((*it_11<0)&&(*it_22>0)) 

mult=change_sign(mult); 
else 
if((*it_11>0)&&(*it_22<0)) 

mult=change_sign(mult); 
mult=discard(mult); 
 return mult; 
} 
///**********Overload Division Operator************/// 
bigint divid(bigint number1,bigint number2) 
{ 
bigint div,div1,div2,div3,div4,div5; 
int defsize,m; 
unsigned long int result,c=0; 
int size1=number1.mylist.size(),size2=number2.mylist.size(),maxsize=(size1 < size2 ? size2 : size1); 
     if(size1 > size2) 
     { 
     defsize=maxsize-size2; 
     for(m=0;m<defsize;m++) 
     number2.mylist.insert(number2.mylist.begin(),0); 
     } 
 while(number1 >= number2) 
    { 



 

     number1=number1-number2; 
  c++; 
     if(c==999) 
 { 
    div.mylist.push_back(c); 
       c=0; 
     } 
   } 
int size=div.mylist.size(); 
if (size != 0) 
{ 
  while(size > 0) 
 { 
 result=size%1000; 
 size=size/1000; 
 div1.mylist.insert(div1.mylist.begin(),result); 
 } 
       div2.mylist.push_back(999); 
         div3=div1*div2; 
   if(c>0) 
   { 
      div4.mylist.push_back(c); 
      div5=div3+div4; 
   } 
} 
else 
   div5.mylist.push_back(c); 
return div5; 
} 
///**********Overload Division Operator************/// 
bigint operator/(bigint number1,bigint number2) 
{ 
bigint R,base,q,q1,q3,number2_2,temp; 
bigint number11,number22; 
number1=discard(number1); 
number2=discard(number2); 
 
int x,i,n,size=number1.mylist.size(); 
int flag; 
 
number11=number1; 
number22=number2; 
 
number1=absolute(number1); 
number2=absolute(number2); 
if((number1==zero)||(number2==zero)||(number1<number2)) 
q1=zero; 
else 
if(number2==one) 
q1=number1; 
else 
if(number1==number2) 
q1=one; 
else 
if(number1>number2) 
{ 
R=number1; 
number2_2=number2; 
i=0; 
n=size-1; 



 

 do 
{ 
      for(x=1;x<=(n-i);x++) 
 number2.mylist.push_back(0); 
      q.mylist.erase(q.mylist.begin(),q.mylist.end()); 
      q=divid(R,number2); 
      list<int>::reverse_iterator it1=q.mylist.rbegin(); 
      q1.mylist.push_back(*it1); 
      temp=q*number2; 
      R = R - temp; 
      i++; 
      number2=number2_2; 
  }while(i<=n); 
} 
list<int>::iterator it_11 = number11.mylist.begin(); 
list<int>::iterator it_22 = number22.mylist.begin(); 
 
if((*it_11<0)&&(*it_22>0)) 
flag=1; 
else 
if((*it_11>0)&&(*it_22<0)) 
flag=2; 
 
 if((flag==1)||(flag==2)) 
  { 
 q1=discard(q1); 
 q1=change_sign(q1); 
  } 
 
q1=discard(q1); 
 return q1; 
} 
///***********overload Mod operator*************/// 
bigint operator%(bigint number1,bigint number2) 
{ 
bigint R,base,q,q1,q3,number2_2,temp; 
int x,n,size=number1.mylist.size(); 
number1=discard(number1); 
number2=discard(number2); 
 
if((number1==zero)||(number2==zero)||(number2==one)||(number1==number2)) 
 R=zero; 
else 
if(number1<number2) 
 R=number1; 
else 
if(number1>number2) 
{ 
R=number1; 
number2_2=number2; 
int i=0; 
n=size-1; 
   do 
   { 
      for(x=1;x<=(n-i);x++) 
            number2.mylist.push_back(0); 
      q.mylist.erase(q.mylist.begin(),q.mylist.end()); 
      q=divid(R,number2); 
      list<int>::reverse_iterator it1=q.mylist.rbegin(); 
      q1.mylist.push_back(*it1); 



 

      temp=q*number2; 
      R = R - temp; 
      i++; 
      number2=number2_2; 
  }while(i<=n); 
} 
R=discard(R); 
return R; 
} 
///**************Obtain Pinary_number ********* 
bigint pin_num(bigint number1) 
{ 
bigint mod,number2,pnum,q; 
 
while(number1>zero) 
{ 
    mod=number1%two; 
    list<int>::reverse_iterator it1=mod.mylist.rbegin(); 
    pnum.mylist.insert(pnum.mylist.begin(),*it1); 
    number1=number1/two; 
} 
return pnum; 
} 
///***************Extended Euclidean Algorithem******* 
bigint EEA(bigint number1,bigint number2, bigint &d,bigint &x,bigint &y) 
{ 
bigint q,r,x0,y0,x1,y1,gcd; 
bigint val1,val2,val3,vn; 
vn=number2; 
number1=discard(number1); 
number2=discard(number2); 
 
x0=one; 
y0=zero; 
x1=zero; 
y1=one; 
 while (number2 >zero) 
 { 
     q=number1/number2; 
                  val1=q*number2; 
     r = number1-val1; 
                  val2=q*x1; 
                  x=x0-val2; 
                  val3=q*y1; 
                   y=y0-val3; 
                   number1=number2 ; 
        number2=r; 
      x0=x1; 
     x1=x; 
     y0=y1; 
                   y1=y; 
            } 
d=number1; 
x=x0; 
y=y0; 
 
    if(x<=0) x=x+vn; 
     else 
     if(x>vn) x=x-vn; 
return d,x,y; 



 

} 
///***************Euclidean Algorithem******* 
bigint EA(bigint number1,bigint number2) 
{ 
bigint r; 
number1=discard(number1); 
number2=discard(number2); 
 while(number2>zero) 
 { 
  r=number1%number2; 
  number1=number2; 
  number2=r; 
 } 
   if(number1!=zero) 
   number1=discard(number1); 
return number1; 
} 
//************* define random function 
bigint random_bigint() 
{ 
bigint x; 
int i,x1; 
randomize(); 
for(i=0;i<1;i++) 
{ 
x1=random(1000); 
x.mylist.push_back(x1); 
} 
while(x<=zero) 
x=x+one; 
x=discard(x); 
return x; 
} 
//*************** define random function within sepecific range 
bigint random_val(bigint number) 
{ 
bigint r,r1; 
r=random_bigint(); 
   if(r>number) 
   while(r>number) 
   { 

r=r/number; 
   } 
r=discard(r); 
return r; 
} 
//******* define RSMA 
bigint RSMA(bigint x, bigint e1, bigint n) 
{ 
bigint t,y,e,squr; 
e=pin_num(e1); 
list<int>::reverse_iterator ite=e.mylist.rbegin(); 
  if (*ite == 1) 
   y=x; 
  else 
   y=one; 
   t=x; 
   *ite++; 
 
  while(ite!=e.mylist.rend()) 



 

   { 
    squr=t*t; 
    t= squr%n; 
    if(*ite==1) 
     y=(t*y)%n; 
    *ite++; 
   } 
  y=discard(y); 
 return y; 
} 
//************** Calculatt 2 to power s multply by r 
bigint calc(bigint n1, bigint &s, bigint &r) 
{ 
bigint c; 
c=zero; 
   while(n1>zero) 
   { 
      if((n1%two)==zero) 
     c=c+one; 
     n1=n1/two; 
     if((n1%two)==one) 
     break; 
   } 
 r=n1; 
  s=c; 
return s,r; 
} 
//********Miller Rabin Primality test 
bool Prime(bigint n) 
{ 
 bool p; 
 n=discard(n); 
 bigint five,d,xx,y; 
 five.mylist.push_back(5); 
 bigint i,c,x,n1,n11,r,s,e,j,j1,t,t1,s1,e1,er,er1,n2; 
list<int>::reverse_iterator it=n.mylist.rbegin(); 
 c=zero; 
  n1=n-one; 
  n11=n1; 
  n2=n-two; 
if((*it%2==0)||(*it%5==0)) 
{ 
p = false; 
} 
 else 
  { 
    calc(n1,s,r); 
 
   do 
    { 
   x=random_val(n2); 
     }while((EA(x,n)!=one)&&(x==one)); 
    t=RSMA(x,r,n); 
    if((t!=one)||(t!=n11)) 
     { 
     j=one; 
       while((j<=s)&&(t != n11)) 
        { 
          t1=t*t; 
          t=t1 % n; 



 

          if(t==one) 
           p = false; 
          j=j+one; 
        }//// end while loop 
       if(t!=n11) 
        return false; 
     }///end if 
     return true; 
  } 
return p; 
} 
///************************** Discard Function 
bigint discard(bigint number) 
{ 
list<int>::iterator it2=number.mylist.begin(); 
int size=number.mylist.size(); 
if((size==1)&&(*it2==0)) 
number=number; 
else 
if(size>1) 
{ 
 while(it2!=number.mylist.end()) 
 { 
 if(*it2 ==0) 
 { 
  number.mylist.pop_front(); 
  it2=number.mylist.begin(); 
 } 
 else 
 break; 
 } 
} 
return number; 
} 
//////////////////////*************** RSA Function********************* 
bigint RSA(bigint plain) 
{ 
bigint p,q,n,vn,e,e1,d,x,y,d1; 
bigint cipher,msg; 
  randomize(); 
 
 
 
 
////********************************************************** 
////////***********************Key Generation***************** 
 do 
  { 
   do 
   { 
      p=random_bigint(); 
      cout<<"p = "<<p; 
   }while((Prime(p)==false)); 
    do 
    { 
      q=random_bigint(); 
      cout<<"q = "<<q; 
    }while((Prime(q)==false)); 
  }while(p==q); 
  n=p*q; 



 

  vn=(p-one)*(q-one); 
////********** Find e 
  do 
  { 
      e1=random_val(vn); 
      cout<<"e1="<<e1; 
   }while((EA(e1,vn))!=one); 
///*********** find d; 
  e=e1; 
  EEA(e,vn,d,x,y); 
  cout<<" d = "<<d; 
  cout<<"inverse modulus = "<<x; 
   cout<<"\n p="<<p; 
   cout<<"\n q="<<q; 
   cout<<"\n n="<<n; 
   cout<<"\n vn="<<vn; 
   cout<<"Public Key ="<<e; 
    cout<<"Private Key ="<<x; 
////********************************************************** 
/////********************** Encryption  ******************** 
///////// Encrypt Message 
   cipher=RSMA(plain,e,n); 
   cout<<"Encrypted Message = "<<cipher; 
///************************************************************ 
///*********************Decrypt Message ********************** 
   msg = RSMA(cipher,x,n); 
   cout<<"decrypt message = "<<msg; 
 
return msg; 
} 
 


