
 بسم الله الرحمن الرحیم

Sudan University Of Science & Technology

College Of Graduate Studies

Big Integers And Their Use In Public Key
Cryptosystem

By

Manar Ahmed Mohammed Hamza

Submitted In Partial Fulfillment Of The
Requirement For The Degree
M.Sc. In Computer Science

Supervisor
Dr. Mohsen Hassan Abd Allah Hashim

June 2005

 II

Dedication

To my parents with love

 Manar

 III

Acknowledgment

First of all I should thank Almighty Allah for giving me

strength, patience and help to complete this research.

I want to acknowledge people who contributed to completion

the study and preparation of the research.

Actually, I’m indebted to my supervisor Dr. Mohsen Hassan

Abd Allah Hashim to his valuable advice and keen guidance in
preparing this project.

A gratefully acknowledgment must be extended to the

participation of the staff in the department of computer science and
information technology at Sudan University of Science and
Technology for all technical help I had received.

Particular acknowledgement must be made to Miss Intesar for

her contribution.

I would like to express my grateful thanks to my lovely family

for their continuous encouragement and sentiments to complete this
work.

 IV

 ملخص البحث

،)bigint(في ھذه الدراسة، تم تعریف نوع جدید من أنواع البیانات

لتعریف ھذا النوع الجدید و الذي یمكنھ من تمثیل أي حجم من ++Cباستخدام لغة classو صمم

البیانات قادر على إجراء العملیات الریاضیة على الأرقام من أنواع)class(الأرقام، و ھذا النوع

 .بمختلف الأحجام

أي .)bigint(تم اختیار القوائم المتصلة ثنائیة الاتجاه كوحدة تخزینیة لتعریف نوع البیانات

).عقدة(أي أنھ سیتم تخزین ثلاث خانات في كل قائمة 1000رقم في ھذا النوع سیتم تمثیلھ بالأساس

تم). bigint(ع سوف یتم تعریف و تحمیل العملیات الریاضیة و العلائقیة لھذا النوع و بالطب

 . تعریف و تكییف العدید من الدوال ذات الصلة بنظریة الأرقام

لھ أھمیة في إجراء العدید من العملیات الریاضیة و تجربتھا لحساب) bigint(ھذا النوع

 .لحسابیة مطلوبة في علم التشفیر اللامتماثل ھذه العملیات ا. الأرقام الكبیرة بإتقان

التقنیات الحدیثة لعلم التشفیر تعتمد على إمكانیة تحدید أرقام أولیة كبیرة ، و بالتالي ستتضمن

 .ھذه الدراسة طرق اختبار الأعداد الأولیة

 .لاختبار و تطبیق ھذا النوع الجدید من أنواع البیانات RSAتم اختیار خوارزمیة ال

 V

Abstract

In this study a bigint data type has been implemented and a C++ class is

designed to represent an arbitrary sized numbers. It is a complete class capable of
performing arithmetic on numbers of any size.

Double Linked List is selected as a storage structure in defining the data

type bigint. In this class each integer is represented as a string of radix 1000 digits,
three digits per node.

Certainly, arithmetic and relational operators are defined and overloaded

for bigint class. Also, several functions related to number theory has been defined
and adapted to the new data type.

This class is important to do multiple precision arithmetic to work out with

large natural numbers calculation. This type of calculation is required in public
key cryptography calculations.

Modern techniques of cryptography rely on the ability to determine

primality for very large integers. Thus the appropriated primality testing
mechanism is included.

An RSA public key cryptosystem represents an excellent case study to test

bigint class.

 VI

Table of contents

Dedication I
Acknowledgement II
Arabic abstract III
Abstract IV
Table of contents V
Table of table IX
Table of figures X
Introduction XI
Chapter one Background and literature review 1
1.1 Background 1
1.1.1 Defining new data type 1
1.1.2 Double linked list 1
1.1.3 Overloading operators and defining functions 2
1.1.3.1 Stream operators(Input/Output) 2
1.1.3.2 Arithmetic operators 2
1.1.3.3 Relational operators 2
1.1.4 Case study 3
1.2 Literature review 3
1.2.1 SQL 3
1.2.2 JAVA 4
1.2.3 Fortran 5
1.2.4 C/C++ 7
1.2.5 Pascal 9
1.2.6 Delphi 10
1.2.7 Visual basic 6 and Basic .NET 10
1.2.8 C# 11
1.2.9 MATLAB 12
Chapter two Designing bigint class and overloading operators 13
2.1 The need of large integer 13
2.2 Linked list 14
2.3 Defining numbers 15
2.4 Designing a bigint class 17
2.4.1 Class fundamental 17
2.4.2 Friend function 17
2.4.3 Steps to design bigint class 18
2.5 Overloading operators and algorithms describe the

basic arithmetic and relational operators
18

2.5.1 Overloading operators 19
2.5.1.1 Stream operators 19

 VII

2.5.1.1.1 Input operator 19
2.5.1.1.2 Output operator 20
2.5.1.2 Relational operators 21
2.5.1.2.1 Equal operator 21
2.5.1.2.2 Not equal operator 22
2.5.1.2.3 Greater (less) than operators 22
2.5.1.3 Arithmetic operators 23
2.5.1.3.1 Addition 24
2.5.1.3.2 Subtraction 25
2.5.1.3.3 Multiplication 26
2.5.1.3.4 Division 28
2.5.1.3.5 Modulation 30
Chapter three Number Theory 31
3.1 Introduction to number theory 31
3.2 Modular arithmetic 32
3.2.1 Definition 32
3.2.2 Modular arithmetic properties 32
3.2.3 Application of modular arithmetic 33
3.2.4 Computing modular exponentiation 35
3.3 Greatest Common Divisor (GCD) 37
3.3.1 Euclidean algorithm for computing the greatest

common divisor of two integers
39

3.3.2 Extended Euclidean algorithm 40
3.4 Prime number 41
3.4.1 Relatively prime 42
3.4.2 Pseudo prime 42
3.4.3 Coprime 42
3.4.4 Primality tests 43
3.4.4.1 Method 1: Naïve method 44
3.4.4.2 Method 2: Fermat test 44
3.4.4.3 Method 3: Euler test (Solovay Strasen method) 46
3.4.4.4 Method 4: Miller Rabin test 46
3.4.5 Algorithm for Miller Rabin test 48
3.4.6 Proven primality 48
3.5 Inverse modulo 49
3.5.1 The Extended Euclidean algorithm and Modular

Inverses
50

3.5.2 Extended Euclidean algorithm 51
Chapter four RSA Public Key Cryptosystem 53
4.1 Cryptology 53
4.1.1 Cryptography 53

 VIII

4.1.2 Terminology 56
4.1.3 Cryptanalysis 56
4.1.4 Secure communication 57
4.2 Types of cryptosystem 58
4.2.1 Symmetric key cryptosystem 60
4.2.2 Public key cryptosystem (Asymmetric key

cryptosystem)
61

4.3 Public key cryptosystem 62
4.3.1 Introduction to public key cryptosystem 62
4.3.2 Public key cryptography technology 63
4.3.3 History 64
4.3.4 Security 65
4.3.5 Application 65
4.3.6 Practical consideration 66
4.3.7 Examples 66
4.4 RSA Public key cryptosystem 67
4.4.1 Introduction to RSA 67
4.4.2 Tools for RSA public key cryptosystem 68
4.4.2.1 Modular arithmetic and modular exponentiation 69
4.4.2.2 RSA encryption and decryption 72
4.4.2.3 Generating very large keys in the RSA system using

random function
77

4.4.2.4 RSA algorithm 78
Chapter five Result 79
5.1 Input and Output operators 79
5.1.1 Input operator 79
5.1.2 Output operator 80
5.2 Generating random number 80
5.3 Arithmetic operators 80
5.3.1 Addition 81
5.3.2 Subtraction 81
5.3.3 Multiplication 82
5.3.4 Division 83
5.3.5 Modulation 83
5.4 Obtaining Greatest Common Divisor (GCD) 84
5.5 Inverse modulo 84
5.6 Repeated square and multiply algorithm 84
5.7 Miller Rabin Primalilty test 85
5.8 RSA public key cryptosystem 85
5.8.1 Key generation 85
5.8.2 Encryption 86

 IX

5.8.3 Decryption 86
Chapter six Conclusion and Recommendation 87
6.1 Conclusion 87
6.2 Recommendation 88
References 89
Appendix 95

 X

Table of tables:

No. of table List of table Page no.
1 The eight common integer data types XIII
2 JAVA basic data type 5
3 Fortran data type 5
4 C/C++ data type 7
5 Integer data type available in Pascal 9
6 Integer data type in Delphi 10
7 List of data types 12
8 Example to get the GCD by using the Extend Euclidean

Algorithm
41

 XI

Table of figures

No. of figure List of figures Page no.
1 Entering large number 79
2 Large number generated 80
3 Adding two large numbers 81
4 Subtract two large numbers 81
5 Multiply two large numbers 82
6 Divide two large numbers 83
7 Modulation of two large numbers 83
8 GCD of two large numbers 84

 XII

Introduction

 The computational demands of modern cipher systems go around
arithmetic of large integers. These days, that means several hundred decimal
digits. In order to try out some of these cryptographic algorithms, we will need a
facility that can do these computations. The security of the encryption scheme
depends entirely on the difficulty of showing some mathematical problems.
Factorizing large numbers is an example.
 In this project we had created a fast, portable, and well documented class
called bigint, with an RSA public key cryptosystem application.

 Publicly available data type on large integers usually suffer from bad
performance and limitation in the smallest and largest integers that it can
represented. We present a flexible bigint class, in the development of which great
care has been taken of speed, maintainability and portability of all available
functions. It has been written in C++ code, a standardized high level language,
providing both the ease of maintaining your program and the possibility of porting
it to other platforms, as well as speed by means of advanced optimizations. [39]

 The current functionality of the class can be grouped into the following
categories: Input and Output large numbers, arithmetic operations (addition,
subtraction, multiplication, squaring, integer division, modular) relational
operations (greater than, greater than or equal, small than, small than or equal,
equal to, not equal , assignment), greatest common divisor, modular inverse,
converting to binary representation and high-level arithmetic (modular
exponentiation, random number generation, generation of primes, ‘strong’ primes,
and RSA key sets). [39]

 Double linked list represents excellent storage structure for large numbers,
any number will be store in a separate list, double linked list seems appropriate
because we need to traverse the lists in both side. [39]

For operations on arbitrarily large, unsigned integers a representation in
radix b notation is used, where b can be in principle any integer >= 2. That is, an
arbitrary nonnegative integer x is represented as a sequence of radix b digits (x0,
x1, x 2, x3 ..., xk+1), where [39]

x =




1

0

i
ibx

k

i
, 0  xi< b for i = 0, 1, ….., k-1

 The foundation of cryptography is essentially large integers. All the
mathematics involved to help scramble the information is based on highly
involved manipulations of large integers. Often the mathematics deals with special
classes of integers including prime numbers.

 XIII

 Since the advent of public-key cryptography in 1975 many secure public-
key algorithms have been proposed. An important subset is formed by the
algorithms based on modular arithmetic with large unsigned integers, like Diffie-
Hellman, RSA, ELGamal, Guillou-Quisquater, Schnorr, DSA. Our case study is
RSA public key cryptosystem. [39]

A public key cryptosystem require two related, complementary keys. You
can freely distribute one key, the public key to your friends, business associates,
and even your competitors. You will maintain the second key, the private key, in a
secure location (on your computer) and never release it to anyone. The private key
unlocks the encryption that the public key creates. [2]

The public key protocol effectively eliminates the need for the secure

channels required by conventional single-key cryptosystems. Two groups of
individuals – Rivest, Shamir, and Adleman; and Diffie and Helman – designed the
fundamental algorithms governing cryptography within a public-key
cryptosystem. We will see RSA implementation in later chapters, because we will
apply our new data type in its algorithm. [2]

Research problem:

In this research, we will be dealing with the most important problem. It’s
the limitation of the integer data type provided by programming language
especially C/C++.

We've learned that computers, however powerful, are not infinitely precise

in their calculations. For example, the computers with which you are most familiar
(your home PC, for example, or the computers used in the labs) cannot represent
integers with more than about 20 digits in them. For most practical applications
this is simply a fundamental limitation of the computer hardware. [55]

A more pernicious problem with integer operations in C or C++ is that
overflows and other errors in fundamental arithmetic operations often go
undetected, especially with unsigned types. You can implement your own classes
for "safe" ordinal or integer arithmetic. [55]

There are Varieties of integers. Many processors and programming
languages directly supported four sizes and two kinds of integers producing eight
integer data types that you should understand, all listed in Table 1.

 XIV

Table 1: The eight common integer data types (language-independent)

Description Size Range

byte ordinal 1 byte, 8 bits 0 to 255

short
ordinal

2 bytes, 16
bits

0 to 65,535

Ordinal 4 bytes, 32
bits

0 to 4,294,967,295

long ordinal 8 bytes, 64
bits

0 to 18,446,744,073,709,551,615

byte integer 1 byte, 8 bits -128 to 127

short
integer

2 bytes, 16
bits

-32,768 to 32,767

Integer 4 bytes, 32
bits

-2,147,483,648 to 2,147,483,647

long integer 8 bytes, 64
bits

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Table 1's list of types describes unsigned integer types, which don't allow negative
numbers, as ordinal types. The C and C++ languages describe such types as
unsigned.

Thereof, the integer basic data type provided by the C/C++ languages to

represent integers has a limitation in the size of the data type in machine
dependent and also limited in the smallest and largest integers that it can represent.

Actually, the need to represent big numbers exactly (and big integers, in

particular) also arises in computer security. Modern techniques of cryptography
rely on the ability to determine primality for very large integers (integers with
hundreds of digits), and approximations just won't work in this case. Here, we
need arbitrary-precision arithmetic.
This is just a fancy term meaning exact arithmetic for numbers of any size.

Research objectives:

The computational demands of modern cipher systems around ordinary
arithmetic need large integers. These days, that means several hundred decimal

 XV

digits and unlimited digits is what we looking for it. In order to try out some of
these cryptographic algorithms, we will need a facility that can do these
computations.

There are more applications that are need large numbers for more secure.
Such as: messages to be exchanged among an extensive range of applications
involving the Internet, intelligent network, cellular phones, ground-to-air
communications, electronic commerce, secure electronic services, interactive
television, intelligent transportation systems, Voice Over IP and others.

So, we will create a C++ class (bigint) that represents numbers with

unlimited size, for solving a problem we need to overload the natural operators:
addition, subtraction, multiplication, division and modulation so that they will
perform special operations related to the new class that we had created.

There are many algorithms related to number theory we overloaded such as
obtain the greatest common divisor by using Euclidean Algorithm, check the
prime number, inverse modulus using Extended Euclidean Algorithm and other
functions.

This project help programmer to represent large numbers in any
cryptographic application, speedup the encryption and decryption operations, and
make sure it is simple to understand, run give fast computation and a high
precision arithmetic operations result .

Also, one of the main objectives of this study is to provide our own created
data type that will be used in cryptography. Since using other’s created data type
might affect secrecy.

Introducing chapters:

Here is the demonstration of whole chapters in this research:

Chapter 1: Background and literature review:

This chapter gives an overview of this project. It explains briefly how we
will define the new data type, overloading operators, case study and literature
review.

Chapter 2: Designing bigint class and overloading operators:

It concerns with defining bigint class in details and why we need large
numbers. All overloaded operators will be demonstrated.

 XVI

Chapter 3: Number Theory:

Here is an explanation of integer’s properties. We will discuss some basic

number theory such as obtaining the greatest common devisor, modular arithmetic,
modular exponentiation, inverse modulo and primality tests to check if number is
prime or not.

Chapter 4: RSA public key cryptosystem:

It is an implementation of this project. It demonstrates some terminologies
related to cryptosystem, types of cryptosystem and RSA algorithm.

Chapter 5: Results:

This chapter shows whole results we had obtained from this study.

Chapter 6: Conclusion and Recommendations:

Here is the essence and counsel of this project with some recommendations.

