

Sudan University of Science and Technology
Graduate College studies

Hardware and Software for Kidney Dialysis

*A thesis Submitted as partial fulfillment of the
requirement for the degree of Master of Science
(MSc) In Electronics engineering
(computer section)*

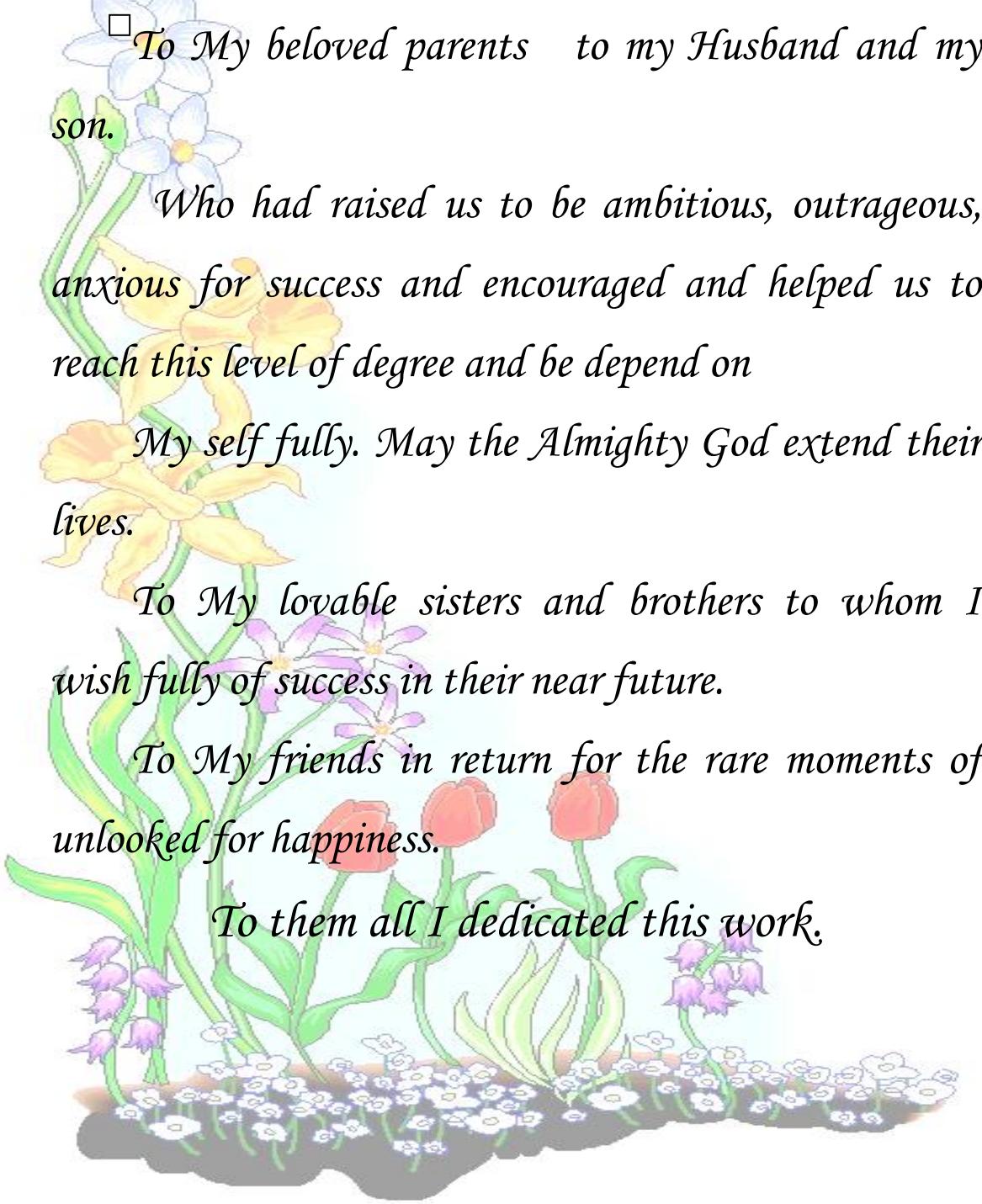
By:

Maha Salem Mohammed Mousa

Supervisor by:

Abd Elrasol Jabber

Feb 2007



قال تعالى :
(قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)

صدق الله العظيم

سورة البقرة الآية 32

Dedication

To My beloved parents to my Husband and my son.

Who had raised us to be ambitious, outrageous, anxious for success and encouraged and helped us to reach this level of degree and be depend on

My self fully. May the Almighty God extend their lives.

To My lovable sisters and brothers to whom I wish fully of success in their near future.

To My friends in return for the rare moments of unlooked for happiness.

To them all I dedicated this work.

Acknowledgement

I am deeply full to all those who have with such good grace given us their time and energy to supply valuable facts and opinions, they principally include

Eng. Salem Mohammed Mousa

Eng. Elmamown Abdelwahied

I extend our sincere thanks and we are indebted to a man who played a key role and made a significant contribution to this project for his time ,experience and efforts, I remain great full to My supervisor :

Dr. Adbelrasool Jabber

Needless to say, with out all the above help and support, the writing and production of this project would not have been possible.

Maha

تجريـد

يعتبر الفشل الكلوي من الأمراض الخطيرة التي تهدد حياة الإنسان، لذا فقد حرص العلماء منذ الولهة الأولى لمحاربة المرض وكيفية علاجه.

ولقد توصل العلماء إلى أن علاج الفشل يتم بواسطة علاجين أولاً الزراعة :

حيث يتم استبدال الكلى المتعطبة بأخرى سليمة ثانياً الغسيل :

يعتبر الغسيل العلاج السهل والأكثر توفر حيث يصعب الحصول على من يتبرع بكليته أو يصعب الحصول على المال الكافي لشراء كلية سليمة لإتمام عملية الزراعة .

ينقسم الغسيل إلى نوعين :

1. البرتوني حيث يستخدم الغشاء البرتوني للبطن لإتمام عملية الغسيل فهو الأرخص ثمناً إلا أنه يعرض المريض للإصابة ببعض الإلتهابات الناتجة من إجراء فتح صغير بالبطن .

2. الغسيل الدموي وهو الأكثر شيوعاً وهو حل وسط ما بين صعوبة الزراعة وخطورة الغسيل البرتوني ، هنالك عدة طرق لإجراء الغسيل الدموي وكما أنه يمكن لكل مريض أن يغسل حسب وضعه الصحي وحسب ما يحتاجه من نظام لعملية الغسيل.

ت تكون مراكز الغسيل من :

1. غرفة لتنقية المياه تحتوي على مرشحات كبيرة حتى يجدر الوصول إلى مياه صافية ونقية لا تحتوي على أي نوع من الأملاح المعدنية وهي غير صالحة للاستعمال الآدمي .

2. غرفة لإجراء عملية الغسيل وتحتوي على الماكينات التي تستعمل الماء القادم من غرفة التنقية لتحضير محلول المستخدم لعملية الغسيل وكما تقوم بعملية الغسيل نفسها .

أن مريض الفشل الكلوي خاصة الفشل الكلوي الحاد والذي يعاني من أمراض أخرى خطيرة ويعتمد على كثير من الأجهزة التي تتحكم وترافق جميع العمليات العضوية للجسم (المريض الموجود في غرفة العناية المكثفة) لذا لابد من وجود بعض الأجهزة التي تستطيع القيام بعملية الغسيل وتكون موجودة في غرفة العناية المكثفة.

مثل هذه الأجهزة لا تحتاج الي غرفة لتنقية المياه لأنها لا تعمد على تحضير محلول الغسيل بنفسها بل تعتمد على المحاليل المحضررة في مصانع الأدوية المختلفة ، هذه الأجهزة تتميز بخلاف ثمنها وغلاء الوصلات الوريدية المستعملة لذا فهي حكر للدول الغنية فقط ، لذا لا توجد في أي مستشفى من مستشفياتنا في السودان الا واحدة فقط موجودة في مركز الدكتورة سلمي محمد سليمان لغسيل وزراعة الكلى وهي موقوفة عن العمل لأنها مصممة علي نوع واحد من الوصلات الوريدية والذي يتميز بخلاف ثمنه .

أن التقدم في علوم الكمبيوتر جعلنا نسعى في بحثنا هذا وراء استخدامه كوسيلة للقيادة والتحكم في إجراء عملية الغسيل الدموي بواسطة برنامج يكتب خصيصا لإدارة وتشغيل الطلبات التي تضخ الدم من المريض ، وأيضا تقوم بإيصال محلول الغسيل الى الكلية الصناعية لإنتمام عملية الغسيل ، وحتى نستطيع أن نمتلك جهاز .

Abstract

Renal failure is a great danger on human life for these scientists take care to remove it from life. Extract renal failure done by two methods.

Firstly: transplantation

In this case the defect kidney exchanged

Secondly dialysis

Dialysis is easiest one and more available because it's difficult to find donor to do transplant

There are two type of dialysis

Protienial Dialysis

In this type abdominal membrane is used to exchange and remove toxic from blood. It is more danger because of surgery hole in abdominal so it cause infection.

Hemodialysis more usage solution it is medium between protienial with infection and transplantation with high cost.

The dialysis centre contains:

Water treatment system with large filter purposed to get high quality of water (H₂O) pure.

Ward for doing dialysis session contain the machine which done the dialysis by using pure water from water treatment room to prepare solution for dialysis and do dialysis it self.

Patient of renal failure especially who had acute ones and who had more disease and his life depend more on apparatus that control and monitor the metabolic operation (we mean patient in intensive care unit) it must be machine that can do dialysis without large filter on water treatment room .this machine use fluid that prepare in medicine factory. That kind of machine is more expensive and dialysis apparatus cost more, so no existing of these machine in our hospital in Sudan for these we do this research using a computer to drive hemodialysis procedure. Because the computer is a cheap

device and development of program language and easiest to interface with electronic component like stepper motor, relay, LED, etc.....

Objective

The whole procedure objective can be summarized in two main points:

- 1- Implementing hemodialysis hardware procedure to feeding the blood and dialysate through artificial kidney “semi preamble membranes”.
- 2- Write program to control blood pumps and dialysate pumps and monitor dialysate .

Contents

Subject	Page
الأية	I
Dedication	ii
Acknowledgement	iii
تجريـد	iv
Abstract	vi
Objective	vii
Contents	viii
Chapter One introduction	
1-Introduction	1
1-1 renal system	1
1-2Effect of renal failure	2
1-3 dialysis patients with artificial kidney	2
1-4 Intensive and coronary care unit.	3
1-5 ICU/CCU equipment:-	3
1-6 water treatment and dialysis unit:	4
Chapter Two hemodialysis procedure	
2-1 Hemodialysis procedure	6
2-2 Fluid removal:-	6
2-3Hemodialysis circuit	9
2-4 the dialysis machine	9
2-5 the blood circuit	11
2-6 the fluid circuit	11
2-7 Slow continuous therapies	12
Chapter Three stepper motor	
3-1 Introduction	13

3-2 type of step motors	13
3-3 comparison between types	23
3-4 drive circuit	23
3-5 torque generation	31
3-6 step motors Holden torque	32
3-7 holden torque varies with position	33
Chapter Four computer interface	
4-1 Interfacing standard parallel port	35
4-2 interfacing enhanced parallel port	52
4-3 interfacing extended capabilities parallel port	61
4-4 interfacing serial port	77
Chapter Five hardware design	
5. Describe connection between D25 TO IC'S 74273	109
Chapter Six software design	
6-1 Software design	114
Chapter Seven recommended and conclusion	
7-1 Introduction	117
7-2 Computer Control Machine	117
7-3 Advantages of using computer to control device	117
7-4 Conclusions	118
Reference	130