

DEDICATION

To my family.....

ACKNOWLEDGEMENTS

Praise be to Allah, and peace be upon his messengers
First I acknowledge profusely and all the thanks are due to my
god who enabled me to achieve this work.

Then I acknowledge with profound gratitude and sincerity
the supervision and guidance I received from my supervisor
Dr.Omer E. M.FADOL, for his interest, advice, help, constructive
criticism and encouragement throughout the preparation of this
research.

I would like to thank my parents and my family for their
encouragement throughout my study. The completion of my study
would not have been possible without the supporting and
understanding from my family.

Abstract

The behavior of pile-cap in expansive soils layers under axial loading was investigated using axi-symmetric state , finite element model, these consists of soil continuum elements, with material non-linearties for the soil, and the pile-cap is simulated as linear elastic material. The simulation of soil swelling is based on the softening model to determine swelling potential and hence upheaval deformation in pile-cap-soil system.

The literature review was undertaken in order to provide a framework of available information regarding expansive soils and pile foundation on them.

The behavior of pile-cap has been studied extensively using different load, pile diameter, cap diameter and thickness of cap. It is found out from the results of simulation analysis that the addition of a cap to a pile and taking advantage of the axial load resistance of pile cap have been found to increase the axial load carrying capacity of pile-cap system.

The increase in size of pile cap has been found to increase the axial load carrying capacity of pile significantly.

Axial behavior of a pile-cap system is directly related to the axial capacity of the piles. Also, the results obtained using the softening model confirm the fact that the cap on expansive soils increases upheaval deformations in Pile-Cap-Expansive soils systems and induces high tensile stresses in piles.

Key words: expansive soil, swelling potential, softening model, upheaval deformation, pile-cap through expansive soil.

الخلاصة

في هذه الدراسة تم التعرف على سلوك نظام الخازوق - الوسادة في التربة المنتفخة تحت تأثير الحمل المحوري وذلك باستخدام نموذج محوري متماثل بطريقة العنصر المحدد. تم تمثيل عناصر التربة بعناصر مرنّة لا خطّي وعناصر الخازوق - الوسادة مماثلة بعناصر مرنّة خطّي. لإيجاد جهد الانفاس وتشوهات الانفاسية في الخازوق والكاب تم ذلك بطريقة أنموذج الليونة الميكانيكي لحساب تشوّهات التربة الطينية الانفاسية.

تم استعراض المعلومات المتوفرة بخصوص التربة المنتفخة وتأسيس الخوازيق في هذا النوع من التربة.

تمت دراسة سلوك الخازوق - الوسادة ذلك بتغيير الأحمال وأقطار خوازيق الوسادة وسمك الوسادة .

من النتائج التي تم الحصول عليها من هذه المحاكاة وجد انه من محسن إضافة الوسادة للخازوق إن الوسادة تعمل على زيادة المقاومة التحميلية وبالتالي زيادة الحمل المحوري لنظام كذلك الزيادة في حجم الوسادة تنتج عنها زيادة في الحمل المحوري المحمول بواسطة النظام. أيضا وجد أن السلوك المحوري لنظام مرتبط بالزيادة او النقصان في قيمة الحمل.

وأيضا وجد في هذه الدراسة المبنية على أنموذج الليونة و التي تؤكّد على حقيقة أن نظام الخازوق-الوسادة في التربة المنتفخة يعمل على تفاف مشكلة التشوّهات الناتجة من الانفاس وزيادة الاجهادات المحورية في الخازوق وذلك إذا كان الكاب يستند على سطح التربة مباشرة.

Table of Contents

Dedication	I
Acknowledgements	II
Abstract	III
Abstract (Arabic)	IV
Table of Contents	V
List of figures	X
List of Tables	XIII
List of Symbols	XIV

Chapter one: Introduction

1.1 Introduction	1
1.2 Statement of the Problem	2
1.3 Scope and objectives of the study	3
1.4 Methodology	4
1.5 Research Organization	4

Chapter tow: Literature Review

2.1 Expansive soils	6
2.1.1 Background	6
2.1.2 Structure of Expansive Soils	6
2.1.3 Identification of Expansive Soils	6
2.1.4 Methods of measuring swell potential	7
2.1.4.1 Indirect measurement of potential swell	7
2.1.4.1.1 Classification of potential swell based on Casagrande's plasticity chart	7
2.1.4.1.2 Classification of potential swell based on plasticity table	8

2.1.4.1.3 Classification of potential swell based on advanced physical properties of soils	9
2.1.4.2 Direct measurement of potential swell	14
2.1.4.2.1 Measure of potential for swelling by the coefficient of linear extensibility (COLE)	16
2.1.5 Analysis of heave prediction	18
2.1.5.1 Heave prediction based on oedometer test	18
2.1.5.2 Heave prediction based on soil suction test	21
2.1.5.3 Heave prediction based on empirical methods	22
2.1.6 Heave prediction based on softening concept	23
2.1.6.1 Introduction	23
2.1.6.2 Simplification of level site including expansive soil Layers	25
2.1.6.2.1 Basic relationships	25
2.1.6.2.2 Determination of \bar{E}_c	26
2.1.6.3 Determination of vertical expansion strain of element in expansive soil layer	27
2.1.6.4 Calculation method of upheaval deformations of Ground on level site including expansive soil Layers	28
2.1.7 Design and treatment Foundation on expansive soil	29
2.1.7.1 Foundation and Structural Design	29
2.1.7.2 Treatment of Expansive Soils	30
2.1.7.3 Remedial Measures	31
2.2 Pile foundations	32
2.2.1 Introduction	32

2.2.2 Function of piles	33
2.2.3 Classification of piles	33
2.2.3.1 End bearing piles	34
2.2.3.2 Tension piles	34
2.2.3.3 Cohesion piles	34
2.2.3.4 Friction piles	35
2.2.3.5 Combination of friction piles and cohesion Piles	35
2.2.4 Analysis of Piles	35
2.2.4.1 Pile foundation in expansive soils	36
2.3 Finite element method	39
2.3.1 Introduction	39
2.3.2 Description of Finite Element Analysis	39
2.3.3 Geotechnical analyses by finite element method	40
2.3.4 Static soil structure interaction problems	41
2.3.5 Material behavior models	41
2.3.6 Finite element mesh	42

Chapter Three: Softening model in axi-symmetric state

3.1 Introduction	44
3.2 Incremental form of basic equation in axi-symmetric state	45
3.2.1 Basic equation	45
3.2.2 Axi-symmetric matrix form	48
3.3 Determination of expansion strains in axi-symmetric state by the softening model	49
3.3.1 Basic concept	49

3.3.2 Softening model in axi-symmetric state	50
3.4 Relationship of expansion pressure and initial stress	51
3.4.1 Determination of \bar{E}_p and \bar{E}	51
3.4.2 Determination of P_{er} , $P_{e\theta}$ and P_{ez}	52
3.5 Determination of C	54
3.6 Determination of Poisson's Ratio	55

Chapter Four: Analysis of pile-cap through expansive soil

layers using the softening model and finite element method

4.1 Introduction	56
4.2 Simulation of soil-pile system	56
4.3 Simulation analysis procedure	57
4.4 Mesh design	57
4.5 Boundary conditions	57
4.6 Input data	58
4.7 Simulation of loads	59
4.7.1 Body force	59
4.7.2 Surface load	59
4.8 Simulation of swelling effect	60
4.9 Consideration of non-linear behavior of soil	61
4.10 Behavior of interface elements	62
4.11 An example of analysis	62

Chapter Five: Results and analysis of results

5.1 Introduction	65
5.2 Analysis of results	65
5.3 Effect of cap diameter	68

5.4 Effect of pile diameter	71
5.5 Effect of cap thickness	73
5.6 Effect of load on pile and cap	75
5.7 Effect of Poisson's ratio	7
5.8 Effect of soil type	77
Chapter Sixth: Conclusions and Recommendations	
6.1 Conclusions	80
6.2 Recommendations	81
References	82
Appendix -A	84
Appendix-B	87

List of figures

<u>Figure</u>	<u>Title</u>	<u>Page</u>
Fig.2-1	Plot of clay minerals on Casagrande's chart (Chleborad, A. F., et al., 2005)	8
Fig.2-2	Chart for evaluation of potential expansiveness (Seed, et al., 1960)	10
Fig.2-3	Potential severity of volume change for clay soils (Van Der Merwe D. H., 1964)	11
Fig.2-4	Soil classification chart (Skempton, A. W., 1953)	12
Fig.2-5	Classification chart for swelling potential proposed by (Cartel et al., 1991)	13
Fig.2-6	Phase diagrams of free swell	14
Fig.2-7	Free swell under load in the oedometer	16
Fig.2-7	Expansion potential as a function of colloids and COLE (Hardcastle, J. H., 2003).	18
Fig.3-1	An axi-symmetric solid	45
Fig.3-2	Stresses involved in the analysis of axi-symmetric solids	46
Fig.4-1	axial load in the pile	58
Fig.4-2	axial load in the pile plus cap	59
Fig.4-3	Finite element mesh of soil-pile cap system with interface element	64
Fig.5-1	Settlement of ground surface due to pile load (cap Dia 1.5m, thick 0.5m)	66
Fig.5-2	Upheaval deformation on ground surface due to swelling (cap Dia 1.5m, thick 0.5m)	66

Fig.5-3	Total deformation on ground surface due to swelling and pile load (cap Dia 1.5m, thick 0.5m)	67
Fig.5-4	Load-deformations curve on pile head due to swelling and pile load	68
Fig.5-5	Upheaval deformations on ground surface due to swelling(cap Dai 0.75, 1.25, 1.75, 2.25)	69
Fig.5-6	Settlement of ground surface due to pile load (cap Dai 0.75, 1.25, 1.75, 2.25)	69
Fig.5-7	Settlement of ground surface due to pile load (Pile Dia 0.5m, cap Dia 1.25m, thick 0.5m)	70
Fig.5-8	Upheaval deformation on ground surface due to swelling (Pile Dia 0.5m, cap Dia 1.25m, thick 0.5m)	70
Fig.5-9	Total deformation on ground surface due to swelling and pile load (pile Dia 0.5m, Cap Dia 1.25m)	71
Fig.5-10	Total deformation on ground surface due to swelling and pile load (Pile Dia 0.3m)	72
Fig.5-11	Total deformation on ground surface due to swelling and pile load (Pile Dia 0.5m)	72
Fig.5-12	Total deformation on ground surface due to swelling and pile load (Pile Dia 1.00m)	73
Fig.5-13	Total deformation on ground surface due to swelling and pile load (cap thickness 0.3m)	74
Fig.5-14	Total deformation on ground surface due to swelling and pile load (cap thickness 0.2m)	74
Fig.5-15	Settlement of ground surface due to pile load	75

Fig.5-16	Upheaval deformation on ground surface due to swelling	76
Fig.5-17	Total deformation due to swelling and pile load (Poisson's ratio 0.35)	77
Fig.5-18	Load-deformations curve on pile head due to swelling and pile load (Poisson's ratio 0.35&0.30)	77
Fig.5-19	Deformation on ground surface in expansive and non expansive soil layers (Pile Dia 0.5m, cap Dia 1.5m)	78
Fig.5-20	Load-deformations curve on pile head due to swelling and pile load (Exp soil and non Exp soil)	79

List of Tables

Table#	Title	Page
Table.2-1	Classification of potential swell based on plasticity (Holtz and Gibbs, 1956)	9
Table.2-2	Ranges of COLE to determine soil swell-shrink potential (Thomas, et al., 2000)	18
Table.4-1	Soil parameter	63
Table.4-2	Interface elements and the softening model parameter	63

List of Symbols

<u>Symbols</u>	<u>Definition</u>
LL	Liquid limit
PI	Plasticity index
SL	Shrinkage limit
Ac	Activity of soil
C	Colloids (or clay) content
ΔV	Change in initial volume of the specimen
V	Initial volume of the specimen
V_s	Final volume of the specimen
$COLE_{ws}$	Coefficient of linear extensibility on a whole-soil
$\gamma_{d\ 33<2mm}$	Dry density at 33 kPa water retention on a <2 mm
$\gamma_{d<2mm}$	Dry density, oven-dry or air-dry, on a <2 mm
C_m	Coarse fragment (moist) conversion factor
e_0	Voids ratio
e_f	Final voids ratio
Δe	Change in voids ratio during heave
ρ	Total heave
N	Number of layers
z_i	Initial thickness of layer i
C_{mi}	Matric suction index for layer i
C_{ti}	Effective stress index for layer i
σ	Total stress
u_a	pore air pressure
u_w	pore water pressure

α	Compressibility factor (slope of specific volume versus water content curve)
B	slope of suction versus water content curve
G_s	Specific gravity of solids
F_i	a reduction factor for layer i
PE_i	potential expansiveness for layer i
ε_{ve}	Swelling strain
σ_{v0}	Vertical stress
ε_{veo}	Swelling strains under free load
ε_{ve}	Swelling strains under load
$\Delta\varepsilon_{vc}$	additional compression strain induced by softening
P_{ev}	Swelling pressure
\bar{E}_c	additional compression modulus
\bar{E}_{cp}	additional compression modulus according to swelling pressure
\bar{E}_{ci}	additional compression modulus of layer i derived from the softening model.
\bar{E}_{cp}	additional compression modulus according to the swelling pressure
Su	upheaval deformations on ground of site with expansive soil layers
σ_{z0i}	Vertical stress of central point of soil layer i
D	diameter of the pile
K	ratio between the horizontal and vertical pressure
Z	depth of the active zone
C	cohesion of the soil

ϕ	angle of internal friction
γ	total unit weight of the soil
ϕ_{ps}	Effective angle of shaft-soil friction
α_1	coefficient of uplift between the pile and the soil
$\bar{\sigma}_s$	Swelling pressure in terms of effective stresses
W	withholding forces
q_{dl}	unit dead load pressure
f_s	skin friction below active zone.
L	length of the pile
R	radial body forces
Z	Vertical body forces
M	Poisson's ratio
G	Tangent shear modulus
θ	Rotational angle
u	Radial displacements
w	Vertical displacements
P_{ev}	Swelling pressure
σ_{vo}	Initial stresses
\bar{E}_c	Additional compression modulus induced by softening
\bar{E}_{cp}	Additional compression modulus according to swelling pressure,
ε_{ve0}	Swell strain under free load and
τ_{rzp}	Shear stress induced by swelling
A	Area of element
σ_1	Major principal stresses
σ_3	Minor principal stresses

σ_z	Vertical stress
σ_r	Lateral stress
R_f	failure ratio
P_a	Atmospheric pressure
K_{\max}	Shear stiffness coefficient
D_r	Reference shear displacement