DED	$\Gamma \cap \Lambda$	TT	
וטטט	LLA.	11	しノエフ

I dedicate this research to my Father, my Mother and my Brothers

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to my supervisor, Dr. Abdulaziz Yousif Mohamed Abbas for his continues guidance and help in this work. Also thanks and appreciation are extended to Eng / Abdulrahman Abdullah Ahmed the Manager of Department of Analyzing and Planning in NEC Sudan and Eng / Alsayed Alamin Alsedeeg, Eng /Mustafa Mohammed Abdullah from Distribution Department in NEC Sudan to help me to estimate the data requested in this research

ABSTRACT

Reliability is a key aspect of power system design and planning and has been an area of active research for some time now. Reliability studies are performed to maximize the reliability, efficiency, and safety of an electric power system, depending on your particular needs, protective device coordination, short circuit, and load flow studies may be performed and incorporated with the reliability study. In many cases, a reliability study will include a site visit by a field engineer to assess some factors such as: location and placement of surge arresters, transformer sizing and loading data, equipment failure and reliability data, outage restoration and sectionalizing procedures, outage reporting databases. And following the site visit a comprehensive report is submitted discussing the findings and suggesting ways to improve overall reliability of the system. The economics of preventive maintenance and continued operation of older equipment are considered, including downtime, repair costs, and production losses, recommendations may include replacement of marginal equipment and/or equipment approaching the end of its service life.

This research presented the basic concepts of power system reliability of the assessment techniques and reliability indices objective. Also formula of calculation and factors affecting of indices are presented and study focused in distribution system. State space approach (Markov method) that can be used to analyze and assessment the reliability of distribution systems is presented and applied to study some cases for the purpose of comparison between the local network (NEC Sudan) and IEEE.

الملخص

الاعتمادية هي أحد الجوانب الرئيسية لتخطيط وتصميم نظم القوي الكهربائية ، وقد صارت من أكثر مجالات البحث النشط الآن . تجرى دراسات الاعتمادية لتحقيق أقصى قدر من الاعتمادية ، الكفاءة وسلامة نظام الطاقة الكهربائية ، تبعا للاحتياجات الخاصة به من تنسيق أجهزة الحماية ، دوائر القصر ، ويمكن إجراء دراسات تدفق الحمل وتدمج مع دراسة الاعتمادية . في كثير من الحالات ، دراسة الاعتمادية تشمل زيارة المهندس الميداني للمواقع لتقييم بعض العوامل مثل : مو اقع ومواضع مانعات الصواعق ، حجم المحولات وبيانات تحميلها ، المعدات العاطلة وبيانات اعتماديتها، استعادة الانقطاع و إجراءات تقسيم الشبكة ، تقارير بيانات انقطاع الطاقة ، وبعد زيارة الموقع يعد تقرير شامل يقدم فيه نتائج بحثه واقتراح طرق تحسين الاعتمادية لكل النظام ، ويأخذ في الاعتبار اقتصاديات الصيانة الوقائية واستمرار تشغيل المعدات القديمة ، بما في ذلك التوقف ، وتكاليف ال صيانة ، وفقودات الإنتاج ، ويمكن أن تشمل توصيات باستبدال معدات العاطلة و / أو معدات تقترب من نهاية عمر ها الافتراضي.

قدم هذا البحث المفاهيم الأساسية لاعتمادية نظم القوي الكهربية من مؤشرات الاعتمادية ، تعريفاتها وأهداف تقييمها ، التقنيات المستخدمة في التقييم ، المعادلات الرياضية المستخدمة لحسابها والعوامل المؤثرة عليها. وتركزت دراستنا في نظام التوزيع ، وقدم ت طريقة حيز الحالة التي يمكن استخدامها لتحليل اعتمادية نظم التوزيع، وطبقت هذه الطريقة لدراسة حالتين لغرض المقارنة بين الشبكة المحلية و IEEE.

TABLES OF CONTENTS

	Dedication	i
	Acknowledgments	ii
	Abstract	iii
	الملخص	iv
	Tables of Contents	v
	List of Figures	vii
	List of Tables	viii
	Chapter One Background Study and Literature Review	
1.1	Introduction	1
1.2	Reliability	
1.3	Reliability of Electric Power System	
1.4	Reliability Assessment Techniques	6
1.5	Reliability Indices	6
1.6	Literature Review	
1.7	Outline of Thesis	10
	Chapter Two Reliability Indices	
2.1	General Concept	12
	2.1.1 The Objectives of Calculating and Assessing the Reliability	12
	Indices	
2.2	The Classification of Reliability Indices	13
	2.2.1 Reliability Indices of the Position Loads	13
	2.2.2 Reliability Indices of the System	14
2.3	Variables Affecting Reliability Indices	25
2.4	Summary	27
	Chapter Three Power System Reliability Assessment	
3.1	Electric Power System Reliability	28
	3.1.1 Generation System	31
	3.1.2 Transmission System	31
	3.1.3 Distribution System	32
3.2	Electric Power Distribution Reliability	33
	3.2.1 Distribution System Layout	33
	3.2.2 Comparison of Different System Designs	38

3.3	Electric Power Distribution System Reliability Assessment		
	3.3.1	Motivation to Distribution Reliability Assessment	41
	3.3.2	Historical Vs Predictive Reliability Assessment	42
	3.3.3	Reliability Assessment Methods by Probability Methods	46
3.4	Summ	nary	50
	\mathbf{C}	hapter Four Comparison between the IEEE and NEC Sudan	
4.1	Case S	Study of Distribution Feeder Reliability	51
	4.1.1	Practical case study of the IEEE Std 1366 TM – 2003	51
	4.1.2	Practical case study of NEC Sudan	56
	4.1.3	Compare the Results	61
4.2	Substa	ation Configuration Reliability Assessment	63
	4.2.1	Standard Operating Conditions	64
	4.2.2	Operating conditions in some of substation in the NEC Sudan	68
4.3	Summ	nary	70
		Chapter Five Reliability Improvement	
5.1	Gener	al Ways to Improve the Reliability	71
5.2 Proposa		sals to improve the Reliability	74
	5.2.1	University of California	74
	5.2.2	Korea Electric Power Corporation (KEPCO)	77
5.3	Sumn	nary	80
		Chapter Six Conclusions and Recommendations	
6.1	Concl	usions	81
6.2	Recor	nmendations	82
	Refere	ences	83
	Apper	ndices	86

LIST OF FIGURES

Figure 1.1	Basic Division of the Reliability of the Electric Power System	4
Figure 1.2	Percent of U.S. Businesses Disrupted By the Given Problem	5
Figure 1.3	Incremental Cost of Reliability	5
Figure 2.1	Classification of reliability indices	15
Figure 2.2	Reliability Indices Percentage using in USA Utilities	19
Figure 2.3	Functional zones and Hierarchical levels in an electric power	20
	system	
Figure 2.4	Effect of circuit length on SAIFI for one utility in the southwest	25
	U.S	
Figure 2.5	Effect of circuit voltage on SAIFI for one utility in the southern	27
	U.S	
Figure 3.1	Overall Electric Power Systems	30
Figure 3.2	Substations layout	34
Figure 3.3	Simple Radial Distribution Systems	39
Figure 3.4	Alternative feed distribution arrangement	39
Figure 3.5	Alternative Feed Arrangements with DR	40
Figure 3.6	Two fundamentally different approaches	44
Figure 3.7	Basic reliability assessment schemes	45
Figure 3.8	Part of the network contains a one sequence component and two	47
	parallel components	
Figure 3.9	Representation of state transition of the system in figure 3.7	50
Figure 4.1	Bus bar outgoing feeders	57
Figure 4.2	A substation design with two sub-transmission lines and two	63
	transformers	
Figure 4.3	represented the above substation by three components	64
Figure 4.4	Representation of state transition of the system shown in Figure	65
	4.3	

LIST OF TABLES

Table 2.1	Equations of Reliability Indices for Position Loads include the	21
	number of customers	
Table 2.2	Equations of Reliability Indices of the Position Loads include	22
	the load (KVA)	
Table 2.3	Equations of Reliability Indices for Position Loads include the	22
	number of substations (or transformers)	
Table 2.4	Equations of system reliability indices (Sustained interruption	23
	indices include the customer's data)	
Table 2.5	Equations of system reliability indices (Sustained interruption	23
	indices include the loads data)	
Table 2.6	Equations of system reliability indices (Momentary	24
	interruption indices)	
Table 2.7	The relationship between indices of system reliability and	24
	reliability indices of load	
Table 2.8	Comparison of the Reliability of Different Distribution	26
	Configurations	
Table 3.1	Suitable states for the system in Figure 3.7	47
Table 4.1	Outage data for 1994	51
Table 4.2	Extracted customers who were interrupted	52
Table 4.3	Interrupted device operations	53
Table 4.4	General estimate data of feeder1	57
Table 4.5	Interruption data estimate from feeder1	58
Table 4.6	Estimate data for operating outage device	58
Table 4.7	Sustained interruption estimated data for feeder1	59
Table 4.8	Reliability Data of study Substation	66
Table 5.1	Ways to improve the reliability of the system for electrical	75
	power grid consumers	
Table 5.2	Ways to improve the reliability of the electricity system to a	76
	network source of nutrition	