

ACKNOWLEDGMENT

First I thank god very much that guide me to do my best to complete this partial research. Thank very much to my supervisor **Dr. Abdelrasoul Jbbar Alzubaidi** for his endless help, support, and encouragement when I really need it.

Thanks to all those who help me during this partial research and present their experiments and advice to face the difficulties and those who provide emotional support; our parent, sister, brothers, and real friend.

DEDICATION

To my:

Parents

&

Brother

&

Sisters

&

Kinsfolk

&

Friends

ABSTRACT

The huge capering technology that was happens in twenty century which coverage most life sides especially in safety and security system field so they developed very quickly from using the primary devices to developed ones.

In this is project electronic mechanism was used to detect motion in interrogation zone by using electronic circuit which contains transmitting antenna and another one for receiving the ultrasonic waves. The transmitting antenna send ultrasonic waves to the interrogation zone (which motion detection need on it) if interrogation zone was contain object moving that will cause reflection back of some of the transmitted ultrasonic waves to the receiving antenna which transmitted an electrical signal to the personal computer devise via parallel port. After that the personal computer program tests if there is an electrical signal or not in parallel port by using a program written by c language. If there is an electrical signal it will send a control word via parallel port to activate the devices connected to the parallel port (Lamp, Buzzer device).

المستخلص

الطفرة التكنولوجية الهائلة التي حدثت في القرن العشرين شملت معظم مناحي الحياة وخصوصاً في مجال أنظمة الأمن والسلامة والتي تطورت بصورة هائلة في الوسائل المستخدمة من وسائل بدائية إلى وسائل غاية في التقدم .

هذا المشروع تناول آلية إلكترونية لكشف وجود حركة في مكان ما وذلك باستخدام دائرة تحتوى على هوائي ارسال وأخر لاستقبال الموجات فوق الصوتية. حيث أن هوائي الإرسال يقوم بإرسال موجات فوق الصوتية للمنطقة المستهدفة (المراد الكشف عن وجود حركة فيها) فإذا كانت تحتوى على جسم متحرك فسيتسبب ذلك بإرتداد جزء من الموجات فوق الصوتية المرسلة إلى هوائي الاستقبال الذي يقوم بارسال إشارة كهربائية لجهاز الحاسب الآلي عبر منفذ التوازي. بعد ذلك يقوم جهاز الحاسب الآلي باختبار وجود الإشارة الكهربائية على منفذ التوازي من عدمها باستخدام برنامج مكتوب بلغة السى فإذا وجدت الإشارة الكهربائية فإنه يقوم بارسال كلمة تحكم عبر منفذ التوازي لتفعيل الأجهزة المتصلة بمنفذ التوازي (بصيلة كهربائية ؛ جهاز إنزار).

Table of Contents

Content	Page
Acknowledgment.	I
Dedication.	II
Abstract.	III
المستخلص.	IV
Table of Content.	V
List of Table.	VIII
List of Figures.	IX
List of Abbreviations.	X
Chapter One: Introduction.	
1.1 Background.	1
1.2 Problems Statement.	2
1.3 Proposed Solution.	2
1.4 Project Objectives.	3
1.5 Research Methodology.	3
1.6 Research Plan.	5
Chapter Two: Motion Detector Type.	
2.1 Introduction.	6
2.2 Motion Detection Application.	6
2.3 Motion Detection Techniques.	6
2.3.1 Mechanical motion detection technique.	7
2.3.1.1 Magnetic reed switch.	7
2.3.1.2 Mechanical switches.	7
2.3.1.3 Pressure mats.	7
2.3.1.4 Stress sensors.	8
2.3.1.5 Tripwire.	8
2.3.1.6 Taut wire fence systems.	8
2.3.1.7 Glass filled to the brim.	9
2.3.2 Electrical motion detection technique.	9
2.3.2.1 Photoelectric beams.	9
2.3.3 Electronic motion detection technique.	9
2.3.3.1 Infrared motion detectors.	11
2.3.3.1.1 Passive infrared motion detector.	11
2.3.3.1.2 Active infrared motion detector.	12
2.3.3.2 Ultrasonic motion detector.	13
2.3.3.2.1 Passive ultrasonic motion detectors sensors.	14
2.3.3.2.2 Active ultrasonic motion detectors sensors.	14
2.3.3.3 Microwave motion detectors.	15

2.3.3.3.1	Microwave detectors.	16
2.3.3.3.2	Microwave barriers.	16
2.3.3.4	Radar motion detector.	17
2.3.3.4.1	Doppler radar.	18
2.3.3.4.2	Traffic radar.	18
2.3.3.5	Sonar motion detectors.	19
2.3.3.6	Laser motion detectors.	20
2.3.3.7	Lidar motion detectors.	20
2.1	Motion Detection Problems.	21

Chapter Three: Interfacing Techniques.

3.1	Introduction.	22
3.2	Serial Interfacing.	22
3.2.1	Serial port.	22
3.2.1.1	Serial port hardware names.	25
3.2.2	Serial interfacing communications.	25
3.2.2.1	Synchronous communications.	25
3.2.2.2	Asynchronous communications.	25
3.2.3	Serial interfacing standard.	26
3.2.4	Serial interfacing uses.	28
3.3	Parallel Interfacing.	28
3.3.1	Parallel port.	28
3.3.1.1	Parallel port connectors types.	30
3.3.1.2	Parallel port addresses.	31
3.3.1.3	Types of parallel port modes.	32
3.3.1.4	Parallel port registers types.	34
3.3.1.5	Parallel port hardware names.	36
3.3.2	Parallel port uses.	36
3.4	Comparison.	37
3.4.1	Advantage of serial over parallel.	37
3.4.2	Advantage of parallel over serial.	38

Chapter Four: Control System.

4.1	Introduction.	40
4.2	Control Systems Types.	40
4.2.1	Open loop control system (Non feedback).	40
4.2.2	Close loop control system (With feedback).	41
4.2.3	Closed loop versus open loop control system.	41
4.2.4	Positive feedback reinforcement.	42
4.2.5	Negative feedback reinforcement.	42
4.2.6	Logic or sequential controls.	43
4.2.7	Feedback or liner controls.	43
4.2.8	Fuzzy logic control system.	44
4.2.9	Digital control system.	45
4.3	Control System Application.	46

Chapter Five: Electronic Circuit Design.

5.1	Introduction.	48
5.2	Hardware Contains.	48
5.2.1	Ultrasonic radar modules (VM_125).	48
5.2.1.1	Ultrasonic radar module features.	49
5.2.1.2	Ultrasonic radar module specification.	49
5.2.1.3	Ultrasonic radar module components.	49
5.2.1.4	Ultrasonic radar module application.	50
5.2.1.5	Ultrasonic radar module work.	50
5.2.2	HD74LS373 IC.	52
5.2.3	Computer system.	52
5.2.4	SN74373 IC.	52
5.2.5	ULN2803A IC.	53
5.2.6	Board panel.	53
5.2.7	Lamp.	53
5.2.8	Buzzer.	53
5.3	The procedure.	54
5.4	Calculations.	55
Chapter Six: The Software Design.		
6.1	The Flow Chart.	57
Chapter Seven: Result and Discussion.		
7.1	Results.	58
7.2	Discussion.	58
Chapter Eight: Conclusion and Recommendation.		
8.1	Conclusions.	59
8.2	Recommendation.	59
References.		
Appendix A		
(Ultrasonic Radar Model VM-125.		
Appendix B		
HD74LS373 IC Data Sheet.		
Appendix C		
ULN2803A Data Sheet.		
Appendix D		
The C Program Source Code.		

List of Tables

Table No	Table Description	Page No
3.1	D Type 9_Pin and D Type 25_Pin Connectors.	24
3.2	D Type 9_Pin and D Type 25_Pin Connectors Function.	24
3.3	25 pin and 36 pin (centronics) for parallel port connectors.	30
3.4	Parallel port addresses.	31
3.5	Parallel port names.	31
3.6	Data, Status and Control registers port pin and bits.	34
3.7	The Data register port.	35
3.8	The Status register port.	35
3.9	Control register port.	36
5.1	Ultrasonic radar components and its value.	49
5.2	Interconnection from D-25 connector to IC No (1) SN74373	54
5.3	Interconnection from D-25 connector to IC No (2) SN74373	54
5.4	Interconnection from IC No (1) SN74373 to IC No (1) ULN2803.	55
5.5	Interconnection from IC No (2) SN74373 to IC No (2) ULN2803.	55
5.6	Interconnection from Ultrasonic radar module to D-25 connector.	55

List of Figures

Figure No	Figure Description	Page No
1.1	The Doppler Effect for light wave.	1
1.2	The Doppler Effect for sound wave.	2
1.3	General Monitoring System	3
1.4	Ultrasonic Radar Module (VM 125).	4
1.5	Ultrasonic Radar Module Junctions (VM 125).	4
1.6	Surveillance System.	4
2.1	Magnetic Reed Switch.	7
2.2	Mechanical Switch.	7
2.3	Pressure Mats.	8
2.4	Stress Sensors.	8
2.5	Passive Infrared Detector.	12
2.6	Active Infrared Detector.	13
2.7	Basic Ultrasonic Sensor Operation Principle.	14
2.8	Passive Ultrasonic Motion Detectors.	14
2.9	Active Ultrasonic Motion Detectors.	15
2.10	Microwave Motion Detectors.	16
2.11	Radar Motion Detector.	17
2.12	Sonar ping and Echo.	19
3.1	A male DB-9 connector used for a serial port.	23
3.2	A male DB-25 connector used for a serial port.	23
3.3	A female DB-9 connector used for a serial port.	23
3.4	A female DB-25 connector used for a serial port.	23
3.5	A female DB-25 connector used as parallel port.	29
3.6	A male DB-25 connector used as parallel port.	29
4.1	Open loop control system.	41
4.2	Close loop control system.	41
5.1	Ultrasonic radar modules (VM-125)	48
5.2	The Ultrasonic radar module components.	50
5.3	The Ultrasonic radar module components picture.	50
5.4	The Ultrasonic radar module circuit.	51
5.5	The HD74LS373 IC.	52
5.6	SN74373 IC pins.	52
5.7	The ULN2803A IC.	53
5.8	The block diagram of the circuit calculation.	56

List of Abbreviation

Abbreviation	Abbreviation Description
A/D	Analog to Digital converter.
AIR	Active Infra Red detector.
ASIC	Anti-Submarine Detection Investigation.
BIOS	Basic Input Output System.
CTS	Clear To Send.
D/A	Digital to Analog converter.
DC	Direct Current.
DCD	Data Carrier Detect.
DCE	Data Circuit terminating Equipment.
DOS	Disk Operation System.
DSR	Data Set Ready.
DTE	Data Terminal Equipment.
DTR	Data Transmitted Ready.
ECP	Extended Capabilities Port.
EIA	Electronic Industries Association.
EPP	Enhanced Parallel Port.
EPROM	Erases Programmable Read Only Memory.
GND	GrouND.
GPS	Global Position System.
GSM	Global System for Mobile communication.
I/O	Input / Output.
IC	Integrated Circuit.
IEEE	Institute of Electrical and Electronic Engineers.
IR	Infra Red.
IRQ	Interrupt RQuest.
LASER	Light Amplification and Stimulation Emission Radiation.
LED	Light Emitting Diode.
LIDER	Light Detection And Ranging.
LPT	Line Printer Terminal.
NC	Normally Close.
NO	Normally Open.
PC	Personal Computer.
PIR	Passive Infra Red detector.
RADAR	RAdio Detection And Ranging.
RD	Receive Data.
RI	Ring Indicator.
RTS	Request To Send.

RXD	Receive Data.
SCSI	Small Computer System Interface.
SPP	Standard Parallel Port.
TD	Transmitted Data.
TR	TRansistor.
TXD	Transmit Data.
UART	Universal Asynchronous Receiver / Transmitter.
UPS	Uninterrupted Power Supply.
USB	Universal Serial Bus.
VM-125	Vellman Module number 125.
WPESS	Within Pulse Ectronic Sector Scanning.