

Acknowledgements

I would like to express my gratitude to my supervisor Professor Saad Daoud Sulaiman for the opportunity of doing this work and for his supervision and advice during the elaboration of this thesis.

I am also grateful to the Department of Biomedical Engineering and their staff for their constructive guidance, and also I would like to extend my thanks to Dr. Atahir Mohamed and Dr. Abdullah Salih for their constructive guidance.

Last, but not least, I wish to thank my family and my parents for their love, patience and understanding provided during these years, for their great support in difficult moments. Their contribution was crucial in achieving this professional level.

Table of Contents

Acknowledgements.....	i
Table of Contents.....	ii
List of Tables.....	iv
List of Figures.....	v
ABBREVIATIONS.....	vi
Abstract.....	vii
المستخلص.....	viii
INTRODUCTION.....	1
1.1 :General view.....	1
1.1.1: Objectives.....	1
1.1.2: Methodology.....	2
1.2 :Reviews.....	2
1.3:The thesis layouts.....	4
WAVELET TRANSFORM	5
2.1 Wavelet Analysis.....	5
2.2 Continuous Wavelet Transform.....	7
2.3 Discrete Wavelet Transform.....	9
ELECTROCARDIOGRAM (ECG) SIGNAL PROCESSING.....	12
3.1 The Electrocardiogram (ECG).....	12
3.1.1 A Brief Description of Electrocardiogram Domain.....	13

3.1.2 ECG Waves and Time Intervals.....	16
3.2 ECG PREPROCESSING.....	18
3.2.1. Baseline Wander.....	19
3.2.2 Power line Interference.....	20
3.3 WAVE DELINEATION.....	21
3.4 QRS DETECTION.....	23
3.5 DATA COMPRESSION.....	26
MATERIALS AND METHODS.....	30
4.1 ECG FEATURE EXTRACTION (PQRST SIGNAL).....	30
4.2 ECG FEATURE EXTRACTION USING THE DISCRETE WAVELET TRANSFORM (DWT).....	33
1) R Detection.....	33
2) QS Detection.....	33
3) Zero level Detection.....	34
4) P and T Wave Detection.....	34
4.3 ECG FEATURE EXTRACTION USING THE CONTINUOUS WAVELET TRANSFORM (CWT).....	40
4.5 CLASSIFICATION.....	41
RESULTS.....	52
CONCLUSIONS AND RECOMMENDATIONS.....	56
REFERENCES.....	57

List of Tables

Table 4.1. Various abnormalities and their characteristic features.....	36
Table 4.2: Sensitivity (S) and Positive Predictivity (PP) Results of comparison between manual and automatic beat annotation of signals.....	45
Table 4.3: comparison of PRD and RMS performance with DWT and PWT.....	46
Table 4.4: The variations are evaluated using some statistical parameters by PWT.....	45
Table 4.5: Results of the variations are evaluated using some statistical parameters by DWT.....	46

List of Figures

2.1:Time series originally , FT, STFT and wavelet transform.....	7
2.2: The signal multiplied by scaled, shifted versions of the wavelet....	9
2.3: Wavelet decomposition tree	10
2.4: (a) Signal details $d_m(t)$,(b) Signal approximations $x_m(t)$	11
3.1: The human heart.....	14
3.2: Electrocardiography concepts.....	16
3.3: Electrocardiographic baseline wander.....	19
3.2. Noise Reduction.....	21
4.1: Normal PQRST wave	31
4.2: The normal ECG waveform	32
4.2: Description of the ECG feature extraction algorithm.....	35
4.3: Detection procedure. a) R wave detection b) Q & S Waves detection.	
c) Zero level detection. d) P & T detection.....	35
4.4:detail 2^1 (noise).....	37
4.5:detail 2^2 (noise).....	37
4.6:details 2^3 to 2^5 (R Detection).....	38
4.7:details up to 2^5 (QS Detection).....	38
4.8:details 2^1 to 2^5 (Zero level Detection).....	39
4.9:details 2^4 to 2^8 (P and T Wave Detection).....	39

ABBREVIATIONS

AECG	ambulatory Electrocardiogram
ANNs	artificial neural networks
AV	atrioventricular
CWT	Continuous Wavelet Transform
DWT	Discrete Wavelet Transform
ECG	Electrocardiogram
ICT	information and communication technologies
MLP	Multilayer Perceptron
PWT	Packet Wavelet Transform
PRD	percentage root mean-square difference
SA	sinoatrial
VLP	ventricular late potential
WCT	Wilson central terminal
WT	Wavelet Transform

Abstract

ECG contains very important clinical information about the cardiac activities of heart. The features of small variations in ECG signal with time varying morphological characteristics needs to be extracted by signal processing method because there are not visible of graphical ECG signal.

In this work, we have developed and evaluated an electrocardiogram (ECG) feature extraction system based on the multi-resolution wavelet transform. The wavelet transform with scaling function more closely similar to the shape of the ECG (Daubechies wavelets (DWT) and Morlet (CWT)) signal achieved better detection. In the first step, the ECG signal was de-noised by removing the corresponding wavelet coefficients at higher scales. Then, QRS complexes are detected and each complex is used to locate the peaks of the individual waves, including onsets and offsets of the P and T waves which are present in one cardiac cycle. We evaluated the algorithm on MIT-BIH Database, the manually annotated database, for validation purposes. The proposed QRS detector achieved sensitivity of $99.18\% \pm 2.75$ and a positive predictivity of $98.00\% \pm 4.45$ over the validation database.

المستخلص

لأهمية المعلومات المعطاة من جهاز رسم تخطيط القلب ، والتي تبين نشاطات عضلة القلب ، والاختلافات الصغيرة في الإشارة الملتقطة من القلب ، والتي على أساسها يتم تشخيص أمراض القلب المختلفة. ولصعوبة اكتشاف الاختلافات من الرسم مباشره ، مما أدى إلى معالجة الإشارة الملتقطة. وهذا أدى إلى التطور المستمر في عمليات التقاط ومعالجة إشارة القلب . وفي هذا العمل تم استخدام تقنيات wavelet في تحليل وتشخيص الإشارة. حيث نبدأ بالتقاط الإشارة، والتخلص من التشويش الناتج من حركة الجسم أو العمليات الفسيولوجية داخل الجسم، ثم استخدمت تقنيات الموجات لتحديد PQRST، حيث نستخدم خوارزمية ونطبقها على قاعدة البيانات MIT-BIH Database ، وبمقارنة الإشارة الناتجة مع annotated database ، تم الحصول على النتائج: (sensitivity of $99.18\% \pm 2.75$ and a positive predictivity of $98.00\% \pm 4.45$ over the validation database)