

**Table of contents:**

| <b>Number</b>     | <b>Title</b>                                 | <b>Page</b> |
|-------------------|----------------------------------------------|-------------|
|                   |                                              | <b>No.</b>  |
|                   | أدیکشن                                       | I           |
|                   | Dedication                                   | II          |
|                   | Acknowledgements                             | III         |
|                   | Abstract                                     | IV          |
|                   | المختصر                                      | V           |
| <b>Chapter(1)</b> | <b>Introduction</b>                          |             |
| <b>1.1</b>        | Research background                          | 1           |
| <b>1.2</b>        | Problem to be solved                         | 3           |
| <b>1.3</b>        | Objective of the research                    | 3           |
| <b>1.4</b>        | Research methodology                         | 3           |
| <b>1.5</b>        | Expected results                             | 3           |
| <b>1.6</b>        | Thesis outline                               | 4           |
| <b>Chapter(2)</b> | <b>Conventional Optical Fibers</b>           |             |
| <b>2.1</b>        | Introduction                                 | 5           |
| <b>2.2</b>        | Fiber Optics Systems                         | 7           |
| <b>2.3</b>        | Advantages and Disadvantages of Fiber Optics | 8           |
| <b>2.4</b>        | Transmission of Light through Optical Fibers | 9           |
| <b>2.4.1</b>      | Basic Optical Material Properties            | 9           |
| <b>2.5</b>        | Basic Structure of an Optical Fiber          | 11          |
| <b>2.6</b>        | Propagation of Light along a Fiber           | 12          |
| <b>2.6.1</b>      | Ray Theory                                   | 12          |
| <b>2.6.2</b>      | Mode Theory                                  | 16          |
| <b>2.6.3</b>      | Modes Definition                             | 19          |
| <b>2.7</b>        | The Normalized Frequency                     | 21          |
| <b>2.8</b>        | Optical Fiber Types                          | 22          |
| <b>2.8.1</b>      | Single Mode Fibers                           | 22          |
| <b>2.8.2</b>      | Multimode Fibers                             | 23          |

|                   |                                                        |    |
|-------------------|--------------------------------------------------------|----|
| <b>2.9</b>        | Properties of Optical Fiber Transmission               | 24 |
| <b>2.9.1</b>      | Attenuation                                            | 25 |
| <b>2.9.1.1</b>    | Absorption                                             | 26 |
| <b>2.9.1.2</b>    | Scattering                                             | 28 |
| <b>2.9.1.3</b>    | Bending Losses                                         | 29 |
| <b>2.9.2</b>      | Dispersion                                             | 30 |
| <b>2.9.2.1</b>    | Intramodal Dispersion                                  | 31 |
| <b>2.9.2.2</b>    | Intermodal Dispersion                                  | 32 |
| <b>2.10</b>       | Optical fibers and Cable Design                        | 33 |
| <b>2.10.1</b>     | Multi Mode Step-Index Fibers                           | 35 |
| <b>2.10.2</b>     | Multi Mode Graded-Index Fibers                         | 37 |
| <b>2.10.3</b>     | Single Mode Step-index Fibers                          | 41 |
| <b>2.11</b>       | Operating Wavelength                                   | 43 |
| <b>Chapter(3)</b> | <b>Photonic Crystals &amp; Photonic Crystal Fibers</b> |    |
| <b>3.1</b>        | Introduction to Photonic Crystals                      | 45 |
| <b>3.2</b>        | One dimension: Bragg mirrors                           | 46 |
| <b>3.3</b>        | Photonic crystals in two and three dimensions          | 47 |
| <b>3.4</b>        | Introduction to Photonic Crystal Fibers                | 49 |
| <b>3.5</b>        | A historical overview                                  | 50 |
| <b>3.6</b>        | What are photonic crystal fibers?                      | 51 |
| <b>3.7</b>        | Classification of Photonic crystal fibers              | 52 |
| <b>3.8</b>        | Fabrication                                            | 54 |
| <b>3.9</b>        | Guiding process                                        | 56 |
| <b>3.10</b>       | Optical properties                                     | 57 |
| <b>3.10.1</b>     | Index-guiding PCF                                      | 57 |
| <b>3.10.2</b>     | Photonic Band Gap Fibers                               | 60 |
| <b>3.10.3</b>     | Bragg fibers                                           | 62 |
| <b>3.11</b>       | PCFs and Hollow core Micro-Structured optical fibers   | 62 |
| <b>3.11.1</b>     | Hollow core MOFs                                       | 63 |
| <b>3.12</b>       | Unique features of PCF                                 | 65 |
| <b>3.12.1</b>     | Low-loss and long-length PCF                           | 65 |
| <b>3.12.2</b>     | Application as a transmission medium                   | 66 |

|                   |                                                                  |    |
|-------------------|------------------------------------------------------------------|----|
| <b>3.13</b>       | Splicing                                                         | 69 |
| <b>3.14</b>       | Connectors                                                       | 69 |
| <b>3.15</b>       | Coupling                                                         | 70 |
| <b>3.15.1</b>     | Butt coupling                                                    | 71 |
| <b>3.15.2</b>     | Free space coupling                                              | 71 |
| <b>3.15.3</b>     | Fiber to fiber coupling                                          | 72 |
| <b>3.15.4</b>     | Small core fibers                                                | 72 |
| <b>Chapter(4)</b> | <b>A comparison study between PCFs &amp; conventional fibers</b> |    |
| <b>4.1</b>        | Introduction                                                     | 74 |
| <b>4.2</b>        | Propagation or guidance of light                                 | 75 |
| <b>4.3</b>        | Optical Bandwidth                                                | 76 |
| <b>4.4</b>        | Dispersion compensation                                          | 83 |
| <b>4.5</b>        | Mechanical reliability                                           | 85 |
| <b>4.6</b>        | Other comparison characteristics                                 | 85 |
| <b>Chapter(5)</b> | <b>Conclusion &amp; recommendations</b>                          |    |
| <b>5.1</b>        | Conclusion                                                       | 87 |
| <b>5.2</b>        | Recommendations and future work                                  | 88 |
|                   | References                                                       | 89 |

**List of Tables:**

| <b>Number</b> | <b>Title</b>                                      | <b>Page</b> |
|---------------|---------------------------------------------------|-------------|
|               |                                                   | <b>No</b>   |
| <b>2-1</b>    | Details of main advantages of fiber optic systems | 8           |
| <b>3-1</b>    | Over view of photonic crystal fibers development  | 51          |
| <b>4.1</b>    | Characteristics of the chosen PCFs                | 79          |
| <b>4.2</b>    | Comparison of PCF with Conventional Fibers        | 86          |

## List of Figures:

| <b>Number</b> | <b>Title</b>                                                                    | <b>Page</b> |
|---------------|---------------------------------------------------------------------------------|-------------|
|               |                                                                                 | <b>No.</b>  |
| <b>2-1</b>    | Parts of a fiber optic data link                                                | 5           |
| <b>2-2</b>    | Light reflection and refraction at a glass-air boundary                         | 10          |
| <b>2-3</b>    | Critical angle of incidence                                                     | 11          |
| <b>2-4</b>    | Basic structure of an optical fiber                                             | 11          |
| <b>2-5</b>    | Bound and unbound rays in a step-index fiber                                    | 13          |
| <b>2-6</b>    | How a light ray enters an optical fiber                                         | 14          |
| <b>2-7</b>    | Fiber acceptance angle                                                          | 14          |
| <b>2-8</b>    | Skew rays propagation                                                           | 16          |
| <b>2-9</b>    | Plane-wave propagation                                                          | 17          |
| <b>2-10</b>   | Wave front propagation along an optical fiber                                   | 18          |
| <b>2-11</b>   | The spreading of a light pulse                                                  | 19          |
| <b>2-12</b>   | Transverse electric (TE) mode field patterns                                    | 20          |
| <b>2-13</b>   | Low-order and high-order modes                                                  | 20          |
| <b>2-14</b>   | Fiber transmission properties                                                   | 25          |
| <b>2-15</b>   | Pulse spreading and power loss along an optical fiber                           | 25          |
| <b>2-16</b>   | Fiber losses                                                                    | 27          |
| <b>2-17</b>   | Light scattering                                                                | 28          |
| <b>2-18</b>   | Microbend loss                                                                  | 30          |
| <b>2-19</b>   | Pulse overlap                                                                   | 31          |
| <b>2-20</b>   | Distance traveled by each mode over the same time span                          | 32          |
| <b>2-21</b>   | The refractive index profiles and light propagation                             | 34          |
| <b>2-22</b>   | The refractive index profile for multimode step-index fibers                    | 36          |
| <b>2-23</b>   | The refractive index profile for multimode graded-index fibers                  | 37          |
| <b>2-24</b>   | The refractive index profiles for different values of $\alpha$                  | 37          |
| <b>2-25</b>   | Refractive index grading and light propagation in multimode graded-index fibers | 38          |
| <b>2-26</b>   | Matched-clad refractive index profile                                           | 41          |
| <b>2-27</b>   | Depressed-clad refractive index profile                                         | 42          |

|             |                                                                                                                           |    |
|-------------|---------------------------------------------------------------------------------------------------------------------------|----|
| <b>3-1</b>  | Schematic depiction of photonic crystals periodic in one, tow and three directions                                        | 46 |
| <b>3-2</b>  | Cross-sectional photograph of a photonic crystal fiber                                                                    | 50 |
| <b>3-3</b>  | SEM (Scanning Electron Microscope) images of microstructured fibers                                                       | 52 |
| <b>3-4</b>  | Classification of Photonic Crystal Fiber                                                                                  | 53 |
| <b>3-5</b>  | Index-guidance and Band-gap guidance in PCFs                                                                              | 54 |
| <b>3-6</b>  | Typical fabrication process in a photonic crystal fiber                                                                   | 55 |
| <b>3-7</b>  | Three different index-guiding photonic crystal fibers                                                                     | 57 |
| <b>3-8</b>  | Mode-index illustration of the photonic band gaps                                                                         | 60 |
| <b>3-9</b>  | Photonic band gap fibers with the air holes positioned in a honeycoml lattice and a triangular lattice                    | 61 |
| <b>3-10</b> | Schematic representation of the cross-section of a typical solid core MOF and hollow core MOF                             | 63 |
| <b>3-11</b> | Progress in reducing the loss of PCF                                                                                      | 65 |
| <b>3-13</b> | Ultra wide band transmission experiment                                                                                   | 67 |
| <b>3-14</b> | Long distance and nonlinear optical transmission experiment                                                               | 68 |
| <b>3-15</b> | Three different ways of coupling into a PCF                                                                               | 70 |
| <b>3-16</b> | Schematic drawing of the launch optics, for coupling light from a standard SMF-28 fiber into a PCF                        | 72 |
| <b>4-1</b>  | measured attenuation spectra of the conventional SMF and the LMA-5 PCF                                                    | 80 |
| <b>4-2</b>  | Attenuation spectra for conventional SMF, LMA-5, LMA-8, and LMA-11                                                        | 82 |
| <b>4-3</b>  | Insert shows the balance between material and waveguide dispersion for a fiber with zero dispersion slope at 1.55 $\mu$ m | 84 |
| <b>4-4</b>  | Probability plot of tensile strength test                                                                                 | 85 |