DEDICATION

I DEDICATE THIS WORK TO:

Soul of my father Abd Alsalam and to my mother Rogia Who introduce me to the joy of reading from birth, enabling much study to take place today.

To all those who directed me to the way studying and rat me on the right study tract.

To those who told me about this experience and experiments.

ACKNOWLEDGEMENTS

First, praise is to ALLAH, the first cherisher and sustainer of the worlds, Acknowledgement here are more than a decorative ritual, the teachers, Sudan University of science & Technology, Alneelan University Blue Nile University, I'm indebted to all were of them because of their support and advice.

They were all patient and generous in helping.

Special acknowledgements to DR. ABD ALRASOL JABAR ALZUBAIDY who made the completion of this work possible in the first place by this advice and by the generous aid that he has offered to me.

He has also been kind enough to follow me preparing the manuscript and to make constructive.

ABSTRACT

This research reports on the control of the antenna by computer two dimensions through various angles.

A small stepper motor rotates the antenna. The objective of this project was to design the necessary circuitry and software to drive the small stepper motor via a computer's parallel port interface.

There are three key components to the project design: (1) mechanical drive, (2) hardware to software interface, (3) computer software to drive the stepper motor via a computer. The three components were successfully integrated to rotate of the stepper motor through forty-five degree increments.

تجريد

هدفت الدراسة لمعرفة مدى فعالية نظام تحكم في الهواعي عبر الكمبيوتر على اتجاهين الذي قامت الباحثة بتصميمه والذي تم توصيله بجهاز حاسوب مبرمج بلغة ++ C , وذلك للتحكم في الهوائي الموصول بدائرة حيث يتكون هذا البحث من ثلاث مكونات أساسية هي 1. تصميم جهاز الهوائي

2. عمل دائرة المواءمة بين جهاز الحاسوب وال(Stepper motor)

3. كتابة البرنامج بلغة أل C++, وذلك ليقوم بعملية التحكم .

تقوم هذه المكونة مجتمعة بعملية التحكم في الهوائي على اتجاهين رأسيا وأفقيا

Table of Contents

Topics	Page
	No
Dedication	

Acknowledgment		
Abstract	I	
Abstract Arabic version	II	
Table of contents	III	
List of Abbreviation	X	
Chapter one		
1.1 Introduction	1	
1.2 Back ground	3	
1.3. Statement of the Problem	4	
1.4 Proposed solutions	4	
1.5 objectives	4	
1.6 Methodology	5	
1.7 Research outline	6	
Chapter two		
2-1 introduction	7	
2.2. Classical Control	9	
2.2.1. PID controller	9	
2.2.2 Linear control	9	
2.2.3 Non-linear control	9	
2-3 logic or sequential controls	10	
2-4 feed back (closed loop control systems)	11	
2.5 Open-loop control systems(Non feed back control)	13	
Chapter three		
3.1 Introduction	17	
3.2 Fundamental Antenna	18	
3.2.1 Directivity	19	

3.2.2 Power Gain	19	
3.3 Different Types of Antennas	20	
3.2.1 Dipole Antennas	20	
3.2.2 Loop Antennas	21	
3.2.3 Aperture Antennas	21	
3.2.4 Horn Radiation	23	
3.2.5 Array Antennas	24	
3.2.6 Broadside Arrays	24	
3.2.7 Reflector Antennas	25	
3.4 The parabolic antenna	26	
3.4.1 Parabolic reflector	27	
3.4.2 Truncated Paraboloid	29	
3.4.3 Orange-Peel Paraboloid	30	
3.4.4 Cylindrical paraboloid	31	
3.4.5 Corner Reflector	32	
Chapter Four		
4.1 Introduction	34	
4.2 External Ports	34	
4.3 Serial Port	34	
4.4 Parallel port	35	
4.4.1 Parallel port registers	37	
4.4.2 Parallel Port Addresses	38	
Chapter five		
5.1 Introduction	39	
5.2 Design Procedure	39	
5.3 stepper Motor	39	

5.3.1 Types of Stepper Motors	40	
5.3.2 Advantages and disadvantages of stepper motor	41	
5.3.3 Applications of Stepper Motors	42	
5.7 Operation Circuit Design	43	
5.9 The calculations	45	
5.10 Radar Antenna Module	47	
Chapter six		
6.1 Introduction	48	
6.3. program of the design	50	
Chapter Seven		
7.1 Conclusion	55	
7.2 Recommendation	57	
References	58	
Appendix		

List of the figure

Figure	Description	Page NO
1.1	control of the antenna module design	4
2.1	The basic relationship components	8

2.2	Closed-loop control system (PID)	11
2.3	Open-loop control system	13
3.1	Dipole Antenna	19
3.2	loop Antenna	19
3.3	Horn Antenna	20
3.4	Horn radiators	21
3.5	Arrays Antenna	22
3.6	broadside array	23
3.7	diameter pipe mount antenna	24
3.8	Parabolic reflector radiation.	25
3.9	Truncated paraboloid	26
3.10	- Orange-peel paraboloid	27
3.11	Cylindrical paraboloid	28
3.12	. Corner reflector	28
4.2	(DB25) connector	35
4.3	Pin Assignment	36
4.4	Signals between PC and Printer	38
5.1	Block Diagram of the design	39
5.2	block diagram of diagram of an unipolar moto	41
5.3	Circuit Design	44
5.4	block diagram of the Circuit Calculations	45
5.5	5 radar antenna module designs	
6.1	Flow chart of the program	

List of Abbreviations:-

I/O Input /output

PID Proportional-Integral-Derivative

RF Radio frequency

LNB Low-noise block

GCA Ground control approach

IC Integrated circuit

DB-25 D-suBminiature-25

USB Universal Serial Bus

IEEE Institute of Electrical and Electronic Engineers

AWG American wire gauge

TTL Transistor – Transistor logic

IDE Integrated Drive Electronics

BIOS Basic Input Output System

MIMO Multi-Input-Multi-Output