

**SUDAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY
COLLEGE OF GRADUATE STUDIES**

**Modeling of Engine Lubricating Oil
Degradation While In Use**

**نموذج تدهور زيت التزييت لماكينه اثناء
فتره استخدامه**

**Thesis Submitted to the College of Graduate
Studies in Partial Fulfillment of the
Requirements for the Degree of Master of
Science in Mechanical Engineering**

**BY
Yasin Mohamed Awadalla
(B.Sc. Mechanical Engineering (1992**

**:Supervised by
Dr.Hassan Elobaid Hassan**

DEC. 2010

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال تعالى:

﴿[يَرْفَعُ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ.﴾

(صدق الله العظيم)

(المجادلة: الآية 11).

DEDICATION

I would like to dedicate this work to my family
who have supported and encouraged me in all my
.academic and professional endeavors

Abstract

The objective of this research is to obtain a
model for estimating the degradation of the engine

lubricating oil, instead of the engine manufacturer
.[recommendation [interval method

The model was achieved by experimental data obtained from the analysis of the used lubricating oil during its useful life as applied on three trucks. The model was built by using the relationships between the changing of the oil parameters and the engine operating conditions specifically the engine coolant temperature .The oil analysis was initially conducted under regular interval .during truck running at the end of each trip

The model output results gave more understanding on how to use and extend the life time of .lubricant oils

The model findings indicated that the oil can be used in these trucks for 15,000km approximately as opposed to the previous 8,000km (as of owner regulation) .(and 10,000km (as of manufacturer recommendation

{التجريد}

الغرض من هذا البحث عمل نموذج لتقدير التدهور في زيت تزييت الماكينة بدلاً من تقنية تحليل الزيت ويوضح متى يتم استبدال الزيت المستخدم للشاحنات.

تم تحقيق هذا النموذج بواسطة تجارب معملية لتحليل زيت التزييت المستخدم ، حيث وجدت علاقة بين التدهور في مقاييس الزيت وحالة عمل الماكينة. ولقد أجريت عمليات تحليل الزيت أثناء عمل الشاحنة وفي نهاية كل رحلة .

من هذا البحث نستنتج كيفية الإستفادة من عمر زيت التزييت المتبقى بالطريقة المثلثى . وبنهاً لهذه النتائج يمكن استخدام الزيت المستعمل في هذه الشاحنات حتى 15.000 كلم بالتقريب بدلاً عن 8.000 كلم (على حسب تعليمات المالك) 10.000 كلم (تعليمات المصّنع للشاحنات) .

Acknowledgement

The most important acknowledgement goes to the God for being my main support, guide and the light during my college career. Without the God I never reach anything of what I proposed. All my achieved goals during .my life are thanks to the God

My time at Sudan University for Science and Technology has been rather short but none the immensely fulfilling .I have learned a lot, not just about my academic field of study ,but also and possibly more importantly ,about my self and others. Sudan University for Science and Technology is a very unique special place that compares to nothing else. I am so glad that I had the chance for me to know so many wonderful people .I would like especially to thank Dr .Hassan Elobaid Hassan, my supervisor, for his guidance and support must also thank Dr. Khawad, head department, who listen to my thoughts. Thanks for all the staff of the faculty whose provided me with new information's .Thank also for the labor Gafar, .room's lectures keeper, who help us during my staying Thanks for the lubrication companies, TAPCO, FUCS, PETRONAS and TOTAL, for the great help in the lubrication field. Thanks for the skills, engineers, managers and all staff of ELNEFEIDI Transportation Company, the place of conducted the experiments. I want to thank Dr Mohamed Abdel Galeel, Dean of Elnileen Statistic & .Science College, for his great help on building of model

TABLE OF CONTENTS

Dedication	II
Abstract	III
التجريد	IV
Acknowledgement	V
Table of Contents	VI
List of figures	VII
List of tables	XI
Abbreviations	X
Nomenclature	XI
Chapter One: Introduction	1
Problem statement 1.1	1
Objectives of the research 1.2	2
Methodology 1.3	2
Chapter Two: Literature Review	4
Introduction 2.1	6
Lubrication 2.2	6
Lubrication system 2.2.1	6
Lubricant 2.2.2	7
Additives 2.2.3	8
Motor oil, or Engine oil 2.3	8

Motor or Engine oil use 2.3.1	9
Motor or Engine oil Properties 2.3.2	9
Causes of Engine oil Deterioration 2.4	12
Oxidation 2.4.1	13
Additive Depletion 2.4.2	13
Contamination 2.4.3	14
Lubrication failure modes 2.5	15
Modeling 2.6	18
Chapter Three: Engine Cooling System	21
Factor Governing Cooling System Heat Transfer 3.1	21
Coolant Flow Rate 3.2	23
Cooling Airflow 3.3	23
Radiator Face Area 3.4	24
Radiator Fins 3.5	24
Core Depth and Number of Rows of Tubes 3.6	25
Coolant Selection 3.7	25
Common Causes of Engine Overheating 3.8	26
Thermostat Stuck Shut 3.8.1	26
Defective Fan Clutch 38.2	26
Defective Fan Motor 3.8.3	27
3.8.4External Coolant Leaks	27
3.8.5Weak or Leaky Radiator Cap	27
Internal Coolant Leak 3.8.6	27
Exhaust Restriction 3.8.7	28
Bad Water Pump 3.8.8	28
Chapter Four: Experimental Procedure	29

4.1 Testing Procedure	29
Data Resources	29
4.3 Testing Program	32
Chapter Five :Formulation and Analysis	41
Formulation 5.1	41
5.2 Data Collection	41
Statistical Data Analysis 5.3	48
(Estimation by Ordinary Least Squares Method (OLS 5.4	53
[Analysis of Variance [ANOVA 5.5	54
Analysis of Variance In Single Linear Regression For 5.5.1	57
The Truck A	
Analysis of Variance In Single Linear Regression For 5.5.2	59
The Truck B	
Analysis of Variance In Single Linear Regression For 5.5.3	26
The Truck C	
ANOVA In Single Linear Regression For The Truck A, B 5.5.4	64
[and C [Running KM vs. T	
Chapter Six: Results and Discussion	66
Results 6.1	66
Oil Parameters and Coolant Temperature Models 6.1.1	66
Vehicle Speed and Coolant Temperature Models 6.1.2	69
Engine Speed and Coolant Temperature Models 6.1.3	70
Distance Driven And Coolant Temperature Models 6.1.4	71
Results Analysis 6.2	72
[Total Base Number [TBN 6.2.1	72
[Water Content [WC 6.2.2	73
[Kinematic Viscosity [KVISC100 6.2.3	73

[Kinematic Viscosity [KVISC40 6.2.4	73
[Insoluble's [INSO 6.2.5	73
Chapter seven: Conclusion and Recommendation	75
7.1Conclusion	75
Recommendation 7.2	77
References	
Appendices	

List of Figures

- Figure (2-1) Lubricating Oil Refining Process
- Figure (2-2) Lubrication System
- Figure (2-3) Flexibility of Multi-grades
- Figure (2-4) Graph Show TBN and TAN
- Figure (3-1) Sketch of a Typical Cooling System and the Coolant Path
- Figure (4-1)Oil specification table
- Figure (4-2) Overview of the four main Testing Program .tasks and the respective subtasks
- (Figure (4-3) Charts (Diagnostics reading truck A
- (Figure (4-4) Charts (Diagnostics reading truck B
- (Figure (4-5) Charts (Diagnostics reading truck C
- Figure (5-1) Reference data for the used oil
- Figure (6-1) graph of TBN vs. T for Truck A
- Figure (6-2) graph of KVSC100 vs. T For Truck A
- Figure (6-3) WC vs. T for Truck A
- Figure (6-4) INSO vs. T for Truck A
- Figure (6-5) KVSC40 vs. T for Truck A
- Figure (6-6) the relationship between T and vs. for Trucks A, B and C

Figure (6-7) the relationship between T vs. ES for Trucks A, B and C

List of tables

(Table (2-1) SAE J300 Viscosity Classification (Current Table (4-1) show truck Speed, condition, load carrying and [the driver type for trucks [A, B and C

Table (5-1) Vehicle speed truck A

Table (5-2) Engine speed truck A

Table (5-3) Coolant temperature truck A

Table (5-4) Vehicle speed truck B

Table (5-5) Engine speed truck B

Table (5-6) Coolant temperature truck B

Table (5-7) Vehicle speed truck C

Table (5-8) Engine speed truck C

Table (5-9) Coolant temperature truck C

Table (5-10) Oil analysis for truck A

Table (5-11) Oil analysis for truck B

Table (5-12) Oil analysis for truck C

Table (5-13) Trucks data at the final trips

Table (5-14) Example of calculation for truck A, ES, first trip

Table (5-15) Modified data truck A

Table (5-16) Modified data truck B

Table (5-17) Modified data truck C

Table (5-18) ANOVA in simple linear regression table

Table (5-19) Statistic sample of calculation

Table (6-1) ANOVA Summary for trucks A, B and C

		Abbreviation
ACEA	amu	atomic mass unit
SAE		European Automobile Manufacturers' Association
	API	American Petroleum Institute
	ARAIBA	Society of Automotive Engineers
CPU		Elnefeidi Truck Company
Trucks Company	code numbers	Computer programmer unit
	A	1060 ,1131 ,1053
	B	For truck 1053
	C	For truck 1131
		For truck 1060
ANOVA		Analysis of Variance
S.O.V		Source of variation
TBN		Total base number (mg (KOH/g of lubricant
TAN		Total acid number ((mg/g

KOH

Potassium Hydroxide

Symbol	Nomenclature	Definition	Units
T	Temperature		
	(°C°, F		
	Hr	Hour	
	X1, X2....	Set numbers	
\bar{x}		Arithmetic sample mean	
n		Number of occurrence or	
		parameters	
f		Frequency	
	Yi	Predictor	
β_0		The intercept term (constant	
	β_1	Slope	
Ui		Random variable	

\hat{Y}_i	Estimated value
$\hat{\beta}_1$	$\hat{\beta}$
$\hat{\sigma}^2_u$	Estimated slope
t	Is error variation
F	Is the student's t test
	Use for test same like t