Sudan University of Science and Technology College of Graduate Studies

Automation of Crude Oil Storage Tanks Changeover mode in Molleeta Field

أتمتة نمط تحويل خزانات تخزين النفط الخام في حقل موليتا

A thesis submitted in partial fulfillment to the requirement for the M.Sc degree in Electrical Engineering (Control)

Prepared by:

Magdi ELsiddig Bakheit Elbalah

Supervised by:

Amir Ahmed Dawood

هال تعالى:-

صدق الله العظيم (الإسراء: 85)

Dedication

To my father

To my mother

To the limit that I can't thank them enough

To my sisters and brothers

To A.. Amir Ahmed Dawood

To my friends

MAGDI

Acknowledgement

Great thank s to Allah the almighty for giving me health, strength and patience to do my research..

My sincere thanks and gratitude to A. Amir Ahmed Dawood for his guidance and encouragement.

My thankfulness and gratefulness to Mr. Maysra Abdelrahim (Instrument and Electrical Engineer) and Mr. Nazar Tag Elsir (Electrical Engineer) for their continuous encouragement, support.

Special and deep thanks to all teachers in the department of Electrical Engineering.

Particular thanks to MR.OMER Osman Adam & MR. Elkhomainy Hamad Elshikh..

Abstract

Most automation systems are spread through the branches of work. Specially in industry, accurate different kinds of costs can be reduced, beside high quality and quantity of production.

Thus, the research aims to introduce the application of programmable logic controller (PLC) to control crude oil storage tanks change over mode by using eight motor operating valves (MOVs), booster pump, water draw off pump, and four level sensors.

After developing and loading the program into the (PLC), the system was simulated and modeled using soft-ware simulator provided by (Siemens) and Supervisory Control And Data Acquisition (SCADA) system , and finally the system was performed in real world.

This project consists of six chapters, Chapter one introduces problem statement & proposed solution, approach & expected results. Chapter two explains process description. Chapter three introduces level measurement techniques. Chapter four introduces PLC in general. Chapter five explains Soft-ware design. Finally. Chapter six the conclusion & recommendation

مستخلص البحث

أخذ نظام الأتمتة انتشارا" واسعا" في العديد من المجالات وخاصة الصناعة بشتى أنواعها المختلفة وذلك لأنه يمتاز بدقه عمل متناهية،تكلفه أقل بالاضافه إلى ألجوده والنوعية العالية من الإنتاج.

يهدف هذا البحث لتقديم تطبيق يوضح كيفية استخدام المتحكم المنطقي القابل للبرمجة (PLC) للتحكم في خزانات الزيت ، ذلك باستخدام ثمانية صمامات كهربائية و طلمبتين وأربعه محساسات للتحكم في مستوي الزيت وبعد تنفيذ وتحميل البرنامج في المتحكم المنطقي القابل للبرمجة ، تمت عملية محاكاة للنظام وذلك باستخدام (Soft-ware Simulator) إنتاج شركة (Siemens) ومن ثم تنفيذ هذا النظام علي أرض الواقع.

هذا البحث يحتوى على ستة فصول ،الفصل الأول المشاكل والاقتراحات للحلول مع النتائج المتوقعة مستقبلا" ،الباب الثاني يصف العملية الصناعية ،الفصل الثالث تقنيات قياسات مستوى السوائل ،الفصل الرابع المتحكم المنطقي القابل للبرمجة (PLC) عموما" ،الفصل الخامس التصميم بإ استخدا م (PLC) و (Siemens) وأخيرا" الفصل السادس يحتوي على الخلاصة والتوصيات .

LIST of CONTENTS

Content	Page
الآية	i

Dedication	ii
Acknowledgement	iii
English Abstract	IV
مستخلص البحث	V
List of Contents	VI
List of Tables	XIII
List of Figures	
	XIII
List of abbreviation	XVII
Chapter One: Introduction & Literature Review	1
1.1 Background	1
1.2 Problem Statement	1
1.3 Proposed Solution	2
1.4 Approach	2
1.5 Literature Review	3
Chapter Two: Process Description	4
2.1 Introduction	
2.1.1 Details of Moleeta Resiver	
2.2.1 Water Removal Principles	6
2.2.2 Dehydration Process	6
2.2.3 Addition of Demulsifiers	6
2.2.4 Heating the Crude Oil	7
2.3.1 First Stage Separators	8
2.3.2 Custody Transfer Metering and Proving	10
2.3.3 Crude Oil Manifold and Static Mixer	10
2.3.4 Crude oil Preheating Facilities	10
2.3.5 Second Stage Separators	
2.4 Gas Boot	
2.5 Crude Oil Storage and Transfer Facilities	
2.5.1 Crude Oil Storage Tanks	
2.5.2 Crude Oil Booster Pumps, Custody Transfer Metering and Crude Oil Pipeline Pumps	15
2.5.2.1 Crude Booster Pumps	15
2.5.2.2 Custody Transfer Metering and Proving	16
2.5.2.3 Crude Pipeline Pumps	16

2.5.2.4 Crude Oil Start Up Pump	16
2.6 Produced Water Treatment System	17
2.6.1 Produced Water Skim Tank	17
2.6.2 Water Level Control Box Arrangement	20
2.7 Skimmed Oil System	20
2.8 Blow down System	20
Chapter Three: Level Measurements	22
3.1 Introduction	22
3.2 Point–Contact Level Sensors	22
3.2.1 Float Level Sensors	23
3.2.2 Multiple-Float Level Sensors	25
3.2.3 Displacer Level Sensor	26
3.2.4 Vibrating- Tines Level Sensor	28
3.2.5 Two –Wire, Conductance- Level Sensor	
3.2.6 Thermistor level Sensor	
3.3 Continuous Level Sensors	
3.3.1 RF Admittance (capacitance) Level Sensor	
3.3.2 Sonic Level Sensors	32
3.3.3 Sounding Tape and Reel Type Level	32
3.3.4 Differential Pressure Level Sensor	34
3.3.5 Radar Level Sensor	35
3.3.5.1 Guided wave Radar	37
3.3.5.2 Regular wave Radar	37
3.3.6 Magnetostrictive Sensors	
3.3.7 Laser Level Sensor	38
3.4 Selection guide for level measurement technologies	39
Chapter-Four: General PLC	42
4.1Introduction	42
4.2 PLC Definition	43

4.3 PLC History	43
4.4 Components of a PLC System	45
4.4.1 Central Processing Unit – CPU	46
4.4.2 Inputs & Outputs	47
4.5 Relays	48
4.5.1 Replacing Relays	49
4.6 Instructions	51
4.6.1 Load	51
4.6.2 LOAD-BAR	52
4.6.3 OUT	53
4.6.4 OUT-BAR	53
4.7 Ladder Diagram Programming	55
4.7.1 Programming unit	58
4.7.2 Power supply	59
4.8 PLC Operation	
4.8.1 Response Time	
4.8.2 Response Time Concerns	62
4.8.3 Pulse stretch function	62
4.8.4 Interrupt function	63
Chapter five : Soft ware Design	65
5.1 Functional specification	65
5.1.1 Description	65
5.1.1 ladder diagram.	68
5.1.3 inputs and outputs points	
5.1.4 Circuit Operation .	
5.1.5 Operator station	
Chapter-Six: Conclusions & Recommendations	72
6.1 Conclusion	72
6.2 Recommendation	72

References	73
References	73

List of Tables

Table (2.1)	details of Moleeta & receiver	4
Table (3.1)	Selection guide for level measurement technologies	39

Table (4.1)	Load instruction	52
Table (4.2)	Out instruction	54
Table (4.3)	Scan Times	64
Table (5.1)	PLC input points .	69
Table (5.2)	PLC output points .	70

List of Figures

Figure (2.1)	Moleeta Field Production Facilities .	5
Figure (2-2a)	separator main component.	9
Figure (2-2b)	M-FPF 1 st stage separator.	9
Figure (2-3)	M-FPF crude oil storage tanks.	14
Figure (2-4)	Produced water tank.	18

Fig (3.1a)	A float in connected to an arm	23
Figure (3.1)	A float switch when the liquid level is low & high	24
Figure (3.3)	multiple –float level sensor	25
Figure (3.4)	Displacer level type.	27
Figure (3.5)	Vibrating- tines level sensor	28
Figure (3.6)	Two -Wire Conductance- Level Sensor.	29
Figure (3.7)	Athermistor level sensor	30
Figure (3.8)	The RF Admittance level sensor	31
Figure (3.9)	The electric type of the RF Admittance level sensor	31
Figure (3.10)	Sounding-type level sensor	33
Figure (3.11)	Sounding-type level sensor	34
Figure (3.12)	The differential pressure sensor	35
Figure (3.13)	Radar level measurement types	37
Figure (3.15)	Magnetostrivtive sensors	38
Figure (4.1)	A real Automation system	43
Figure (4.2)	Components of a PLC System	45
Figure (4.3)	The relationship between the CPU and PLC	46
Figure (4.4)	Central process unit	46
Figure (4.5)	Relay circuit diagram	48
Figure (4.6)	A typical industrial relay	49
Figure (4.7)	A contact symbol	50
Figure (4.8)	A coil symbol	50
Figure (4.9)	converted diagram	51
Figure (4.10)	Load (contact) symbol	51
Figure (4.11)	Load-bar (normally closed contact) symbol	52
Figure (4.12)	OUT (coil) symbol	53
Figure (4.13)	OUT-bar (normally closed coil) symbol	53
Figure (4.14)	circuit diagram	54
Figure (4.15)	ladder diagram	55

Figure (4.16)	a Simple Ladder Logic Diagram	56
Figure (4.17)	A Mnemonic Program and Equivalent Ladder Logic	57
Figure (4.18)	Sequential Function Chart.	58
Figure (4.19)	Programmer Connected to a PLC	59
Figure (4.20)	CPU power supply	60
Figure (4.21)	scanning program cycle	60
Figure (4.22)	Response Time	61
Figure (4.23)	Response Time concerns	62
Figure (4.24)	Pulse stretch function	62
Figure (4.25)	Interrupt function	63
Figure (4.26)	The longest delay time	63
Figure (5.1)	Crude Oil Storage Tanks Unit On Moleeta FPF	67
Figure (5.2)	Circuit program by ladder logic language	68

List of Abbreviation

PLC	Programmable Logic Controller
SDV	Solenoid Valve
FPF	Field Production Facilities
OGM	Oil Gathering Manifold
MFM	Multiphase Flow Meter
BS & W	Base Sediment & Water
PCV	Pressure Control Valve
LCV	Level Control Valve
T_{I}	Temperature Indicator
V/S	Versus
MOV	Motor Operating Valve
NPSH	Net Positive Section Head
FCV	Flow Control Valve
TIC	Temperature Indicator Controller
TV	Temperature Valve
PVSV	Pressure Vacuum Safety Valve
LAHH	Level Alarm High High
FSF	Field Surface Facilities
RF	Radio Frequency
RADAR	Radio Detection And Ranging .
BCD	Binary Coded Decimal
TDR	Time Domain Reflectometery
PID	Proportional Integral Derivative
ESD	Emergency Shut Down
MODICON	Modulator Digital Controller
MAP	Manufacturing Automation Protocol
I/O	Input / Output
CPU	Centeral Processing Unit

LVDT	Linear Variable Differential Transformer
DC	Direct Current
AC	Alternate Current
SFC	Sequential Function Chart
HHS	High High Switch
HS	High Switch
LLS	Low Low Switch
LS	Low Switch
S7-200	Step Seven – 200
DCS	Distributed Control System
SCADA	Supervisory Control And Data Acquisition